• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Sonntag, 20.08.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Neues superhartes, hitzebeständiges "Glas"

Mini-Fenster widersteht 1400 Grad Celsius und ist fast so hart wie Diamant

Erstmals durchsichtig: Forscher haben ein ultrahartes und hitzebeständiges Material erstellt, das zudem transparent ist. Dies gelang ihnen durch hohe Temperaturen und extrem hohen Druck. Die kleinen Scheibchen aus dem dritthärtesten Material der Welt sind zudem noch bei über 1.000 Grad Celsius stabil – und damit hitzebeständiger als Diamant.
Die Größe der Siliziumnitrid-Scheibe beträgt herstellungsbedingt nur wenige Millimeter.

Die Größe der Siliziumnitrid-Scheibe beträgt herstellungsbedingt nur wenige Millimeter.

Siliziumnitrid (Si3N4)ist enorm hart. Es gibt nur zwei Materialien, die noch härter sind: Diamant und das oft als Schleifmittel verwendete Bornitrid. Aufgrund seiner Härte wird Siliziumnitrid für Kugellager, Schneidwerkzeuge und Motorteile in der Auto- und Flugzeugindustrie verwendet. Die gewünschten Bauteile werden hergestellt, indem das pulverförmige Ausgangsmaterial unter Druck und Hitze in die entsprechende Form gepresst wird. Dabei entsteht das "hexagonale" Siliziumnitrid.

Doch das normale Siliziumnitrid ist undurchsichtig – es eignete sich daher bisher nicht für ultraharte Fenster oder optische Linsen. Durch Erhöhen von Druck und Temperatur gelang es Forschern um Norimasa Nishiyama vom Deutschen Elektronen-Synchrotron DESY nun jedoch erstmals, transparentes "kubisches" Siliziumnitrid herzustellen: ein superhartes und extrem hitzebeständiges Material.

Kristallstruktur von hexagonalem und kubischem Siliziumnitrid.

Kristallstruktur von hexagonalem und kubischem Siliziumnitrid.

Druck und Hitze


Dazu setzen Nishiyama und seine Kollegen hexagonales Siliziumnitrid einer Temperatur von 1.800 Grad Celsius und dem 156.000-fachen des Atmosphärendrucks aus. Unter diesen Bedingungen wandelt sich das hexagonale Siliziumnitrid in seine kubische Form um und wird durchsichtig. "Es handelt sich um die erste transparente Probe dieses Materials," berichtet Nishiyama.


"Die Transformation gleicht der von Kohlenstoff, der ebenfalls eine hexagonale Struktur bei Normalbedingungen besitzt und sich unter Hochdruck in eine kubische Variante namens Diamant umwandelt," erklärt der Forscher weiter. "Allerdings hängt die Transparenz von Siliziumnitrid stark von den Korngrenzen ab." Zahlreiche winzige Lücken und Poren zwischen den Kristallen des Materials seien die Hauptursache für die Undurchsichtigkeit des Ausgangsmaterials.

Die Korngrenze, hier zwischen drei Körnern im Siliziumnitrid, ist nur etwa einen Nanometer breit. Im Bild sind sogar einzelne Atome erkennbar.

Die Korngrenze, hier zwischen drei Körnern im Siliziumnitrid, ist nur etwa einen Nanometer breit. Im Bild sind sogar einzelne Atome erkennbar.

Das Geheimnis der Transparenz


Tatsächlich konnten die Wissenschaftler zeigen, dass ihr kubisches Siliziumnitrid sehr dünne Korngrenzen hat, was die Durchsichtigkeit erklärt. Die Übergänge zwischen einzelnen Körnchen im Material sind kleiner als ein Nanometer, also nur wenige Atome breit. "Außerdem verteilen sich in der Hochdruck-Phase Sauerstoff-Verunreinigungen in dem gesamten Material und sammeln sich nicht wie unter Normalbedingungen an den Korngrenzen. Auch das ist entscheidend für die Transparenz," sagt Nishiyama.

Was das Hochdruck-Siliziumnitrid von dem ebenfalls durchsichtigen Diamant abhebt, ist seine Widerstandsfähigkeit gegen extreme Hitze. "Diamant ist an der Luft nur bis etwa 750 Grad Celsius stabil. Kubisches Siliziumnitrid dagegen ist bis 1.400 Grad Celsius stabil," berichtet der Forscher.

Anwendungen mit Einschränkung


Die neue Variante des Siliziumnitrids könnte künftig überall dort eingesetzt werden, wo transparente und gleichzeitig ultraharte und hitzebeständige Materialien benötigt werden. Allerdings gibt es bisher einen Nachteil: Die Herstellung des durchsichtigen Siliziumnitrids ist extrem aufwändig.
"Das Rohmaterial ist billig, aber für die Produktion transparenter Werkstücke benötigen wir etwa doppelt so viel Druck wie für künstlichen Diamant," so Nishiyama.

Und auch die Größe der produzierten Scheibe ist begrenzt. Durchmesser von etwa fünf Millimetern seien noch relativ einfach realisierbar. "Aber alles über einem Zentimeter wird schwer zu erreichen sein," räumt Nishiyama ein. Für Spezialanwendungen, zum Beispiel in der Raumfahrt, könnte das superharte Fensterglas aber sehr interessant sein. (Scientific Reports, 2017; doi: 10.1038/srep44755)
(Deutsches Elektronen-Synchrotron DESY, 20.03.2017 - CLU)
 
Printer IconShare Icon