• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Donnerstag, 26.05.2016
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Kosmische Kollisionen als Motor für Gammablitze

Simulation verschmelzender Neutronensterne enthüllt Ursache für Gammastrahlenausbrüche

Seit Jahren geben kurze Blitze im Gammalicht, die binnen Sekundenbruchteilen mehr Energie freisetzen als unsere Galaxie mit ihren 200 Milliarden Sternen in zwölf Monaten, Rätsel auf. Was steckt hinter diesen Ausbrüchen? Max-Planck-Forscher sind der Lösung nun einen großen Schritt näher gekommen. Auf einem Supercomputer simulierten sie die Verschmelzung zweier Neutronensterne zu einem Schwarzen Loch. Dabei entstand ein starkes Magnetfeld entlang der Rotationsachse. Dieses Magnetfeld wiederum war Voraussetzung für die Erzeugung kurzer Gammastrahlenausbrüche.
Zwei Neutronensterne verschmelzen

Zwei Neutronensterne verschmelzen

Denn aus dem chaotischen Zustand nach der Kollision bildete sich dadurch eine geordnete Struktur – ein Jet, in dem kurze Gammablitze auftreten können. Dies berichten die Wissenschaftler um Luciano Rezzolla vom Max-Planck-Institut für Gravitationsphysik jetzt in der Fachzeitschrift „Astrophysical Journal Letters“.

Spionagesatellit beobachtet Gammastrahlenausbruch


Die erste Beobachtung eines Gammastrahlenausbruchs war Zufall: Ende der 1960er-Jahre entdeckte ein amerikanischer Spionagesatellit auf der Suche nach oberirdischen Atombombenversuchen den ersten „Gamma Ray Burst“ (GBR). Er kam allerdings nicht von der Erde, sondern aus dem Weltall. Von 1991 bis zu seinem Absturz im Juni 2000 registrierte der US-amerikanische Satellit Compton dann täglich etwa einen GBR – die Ursache dieser gewaltigsten Explosionen im Universum blieb jedoch weitgehend im Dunkeln.

Verschmelzende Neutronensterne als Ursache?


Verschmelzende Neutronensterne galten zwar als heiße Kandidaten, die Wissenschaftler verstanden aber nicht, wie aus dem chaotischen Zustand nach der Verschmelzung dieser etwa 20 Kilometer großen, extrem dichtgepackten Kugeln ein entlang der Rotationsachse orientierter Gasstrom – Jet - entstehen soll. Dieser Jet ist aber Voraussetzung für das Auftreten von Gammastrahlenausbrüchen. Wie kann die treibende Kraft hinter dem Prozess diese Ordnung schaffen und solch enorme Energien freisetzen?


Für die kurzen Gammastrahlenblitze mit einer Dauer von bis zu drei Sekunden haben Luciano Rezzolla und seine Kollegen vom Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut (AEI)) in einer internationalen Kooperation nun eine Erklärung gefunden: Das Team hat die Einsteingleichungen und die Gleichungen der Magnetohydrodynamik für zwei zu einem Schwarzen Loch verschmelzende Neutronensterne gelöst und die Simulation auch nach der Verschmelzung weiterlaufen lassen.

Schwaches, chaotisches Magnetfeld


Dabei zeigte sich, dass das entstehende schnell rotierende Schwarze Loch zunächst von einem Ring aus heißer Materie mit einem relativ schwachen, chaotischen Magnetfeld umgeben ist. Dieses instabile System induziert durch die Drehbewegung ein extrem starkes, dazu senkrecht stehendes Magnetfeld von 10 hoch 15 Gauss entlang der Rotationsachse. Zum Vergleich: Dieses Magnetfeld ist 10.000.000.000.000.000 Mal so stark wie das Magnetfeld der Erde.

Damit ist den Wissenschaftlern zufolge der wichtigste Schritt erklärt: Die Entstehung des Jets, in dem dann die ultrahoch erhitzte Materie in zwei gebündelten Strahlen ins All schießen und dabei kurz im Gammastrahlenbereich aufleuchten kann.

Wie aus dem Chaos die Ordnung entsteht


„Zum ersten Mal haben wir den gesamten Prozess vom Verschmelzen der Neutronensterne bis zur Entstehung des Jets beobachtet“, sagt Rezzolla. „Das ist ein Durchbruch, denn bislang war unklar, wie aus dem Chaos die Ordnung entsteht, die für die Ausbildung des Jets und damit für die Gammablitze notwendig ist.“ Die Forscher ließen dafür die Simulation doppelt so lange laufen wie gewöhnlich. Insgesamt hat der Supercomputer Damiana sechs Wochen lang gerechnet. Die komplette Simulation zeigt, was in nur 35 Millisekunden passiert.

„Wir haben eine Brücke zwischen den theoretischen Modellen und den astronomischen Beobachtungen geschlagen, indem wir zeigen konnten, wie eine Jet-förmige Struktur durch Selbstorganisation des Magnetfelds bei der Verschmelzung der Neutronensterne entsteht“, ergänzt Chryssa Kouveliotou von der US-amerikanischen Raumfahrtbehörde NASA.

Megacrashs im All


Zusätzlich zu riesigen Mengen von Gammastrahlung entstehen bei diesen Megacrashs im All auch Gravitationswellen, deren Signalform die Wissenschaftler simulieren. Diese winzigen Kräuselungen der Raumzeit sagte Albert Einstein mit seiner Allgemeinen Relativitätstheorie vorher, sie wurden aber noch nicht direkt gemessen. Die simulierten Wellensignale sollen nach Angaben der Forscher helfen, im Datendschungel der Detektoren echte Gravitationswellen zu entdecken. Denn: Mit einem möglichst genauen Fahndungsfoto steigen die Chancen, die Fingerabdrücke von Gravitationswellen tatsächlich zu identifizieren.

Weltweit gibt es derzeit fünf interferometrische Gravitationswellendetektoren: Das deutsch-britische Projekt GEO600 in der Nähe von Hannover, die drei LIGO-Detektoren in den US-Bundesstaaten Louisiana und Washington sowie das französisch-italienische Projekt Virgo in Pisa, Italien. Geplant ist darüber hinaus der Weltraumdetektor LISA (Laserinterferometer Space Antenna), das gemeinsam von der europäischen Raumfahrtagentur ESA und der NASA im Jahr 2020 gestartet werden soll.

Die Wissenschaftler des Max-Planck-Instituts für Gravitationsphysik sind an GEO600 und LISA entscheidend beteiligt und arbeiten im Rahmen der LIGO-Virgo-Collaboration eng mit den Kollegen der anderen Projekte zusammen. (Astrophysical Journal Letters, 2011; doi:10.1088/2041-8205/732/1/L6)
(MPG, 08.04.2011 - DLO)