• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Sonntag, 25.09.2016
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Kometenlandung: Der Countdown läuft (livestream)

Interview: Lander-Projektleiter Stephan Ulamec vom DLR über Ablauf und Risiken der Landung

Heute Nachmittag ist es soweit: Zum ersten Mal wird eine Raumsonde auf einem Kometen landen – keine leichte Aufgabe. Geht alles gut, dann kommt die Erfolgsmeldung vom Lander Philae gegen 17:00 Uhr. Was bis dahin geschieht und wie die Landung abläuft, erklärt Lander-Projektleiter Stephan Ulamec vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) im Interview.

Live-Stream der ESA zur Landung von Philae auf dem Kometen Churyumov-Gerasimenko

Seit gut zehn Jahren ist die Raumsonde Rosetta mit ihrem huckepack mitreisenden Lander unterwegs zu ihrem Ziel, dem Kometen Churyumov-Gerasimenko. Am 12. November 2014 endlich kommt der spannende Moment: Die Landeinheit wird in 22,5 Kilometern Höhe über dem Kometen von Rosetta abgekoppelt und setzt - so der Plan - rund sieben Stunden später auf der Kometenoberfläche auf. Die ESA überträgt die Ereignisse im Live-Stream.

Ob alles geklappt hat, wird gegen 17:00 Uhr klar sein, dann wird das Signal des Aufsetzens im Lander Control Center (LCC) des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Köln erwartet. Projektleiter Stephan Ulamec erläutert den Ablauf und die Risiken dieser ersten Landung überhaupt auf einem Kometen.

Am 12. November 2014 soll Philae auf Churyumov-Gerasimenko aufsetzen. Wann gibt es das letzte Mal Kontakt zum Lander, bevor der Landevorgang ausgelöst wird?
Ulamec: Die Sequenz, die die Landung steuert, schicken wir über den Orbiter am 8. November, am Samstag, bereits zu „Philae“. Eingeschaltet und geheizt wird der Lander dann am Montag. Währenddessen haben wir auch fast permanent Kontakt zum Lander. Nur wenn von einer Bodenantenne zur nächsten geschaltet wird, gibt es kurze Unterbrechungen der Verbindung.


Was könnte ein Auslösen der Landung letztendlich verschieben oder verhindern?
Ulamec: Es muss natürlich geprüft werden, ob die Kommandos für den Lander tatsächlich auch angekommen sind am Orbiter, in den sogenannten „Stored Telecommand Buffern“ (STCB) - dort werden Kommandosequenzen abgespeichert. Die Separation würde auch verschoben werden, wenn Subsysteme wie beispielsweise die Batterie am Lander nicht funktionieren oder wenn das Schwungrad nicht aufspinnt. Solche Dinge halt.

Raumsonde Rosetta und Landeeinheit Philae beim Kometen.

Raumsonde Rosetta und Landeeinheit Philae beim Kometen.

Ab welchem Moment ist der Punkt erreicht, an dem es kein Zurück mehr für eine Auslösung der Landung gibt?
Ulamec: Von Seiten des Landers geben wir sieben Stunden vor der Separation unser letztes Go. Zwei Stunden vor der Separation prüft die ESA dann noch, ob die Bahn von Rosetta wirklich korrekt ist und das letzte Bahnmanöver richtig funktioniert hat. Die Kommandosequenzen für den Lander sind dann zwar schon oben, man könnte das aber noch stoppen. Wenn man zum Beispiel herausfinden würde, dass Rosetta auf einer falschen Bahn fliegt und dies die Landung von Philae gefährden könnte. Dann stoppt man den Vorgang, und es passiert nichts. Rosetta fliegt dann einfach weiter, geht in einen höheren Orbit und wir würden dann voraussichtlich in zwei Wochen noch einmal einen Versuch starten.

Wann erhält das Team im Lander Control Center am 12. November denn die ersten Rückmeldungen von Philae?
Ulamec: Wir empfangen bereits während des Abstiegs Daten – die Verbindung beginnt etwa zwei Stunden nach der Separation. Dann sendet der Lander Daten zum Orbiter und von dort aus gehen sie zur Erde. Das sind Informationen zum Zustand von Philae, sogenannte „Housekeeping“-Daten, und auch schon einige wissenschaftliche Daten. Beispielsweise erhalten wir die Rückmeldung, ob das Landegestell ausgeklappt wurde.

Und wir erhalten Bilder der ROLIS-Kamera vom Abstieg und Daten zum Beispiel des Instruments CONSERT. Direkt nach der Landung kommen ebenfalls sofort Daten – sofort heißt dann natürlich wie immer mit der Zeitverzögerung von 28 Minuten Signallaufzeit. So lange dauert es, bis wir im Kontrollraum die Rückmeldung erhalten.

Der Touchdown ist vorgesehen für 16.34 Uhr, um 17.02 Uhr müssten dann die Daten eintreffen. Ganz so genau geht’s aber nicht: Wir haben eine Lande-Ellipse mit einem Durchmesser von einem Kilometer, das heißt der Ort der Landung ist ungenau. Und auch der Zeitpunkt ist etwas ungenau – es kann ein wenig früher oder später sein.

Welche Möglichkeiten gibt es denn während des Abstiegs, um noch einzugreifen?
Ulamec: Auch nach dem Abkoppeln können wir im schlimmsten Fall noch Kommandos zum Lander schicken. Das haben wir in Simulationen schon durchgespielt. Dabei haben wir angenommen, dass Philae das Separationssignal vom Orbiter nicht erhalten hat. Dann fällt er sieben Stunden, weiß nicht, dass er abgekoppelt ist und das Landebein würde nicht ausgeklappt.

Der ausgewählte Landeplatz für Philae liegt am Kopf des Kometen P67

Der ausgewählte Landeplatz für Philae liegt am Kopf des Kometen P67

Das war lehrreich: Wir haben hier im LCC die Kommandos generiert, dass Philae das Landegestell noch ausfahren soll und in den Touchdown-Modus umschaltet, in dem auch die Harpunen scharfgestellt werden. Das hat in der Simulation gut geklappt. Vorgesehen ist das natürlich nicht, aber im Notfall würde dies so geschehen. Dann würden wir die fünf Stunden vor der Landung, in denen wir bereits Kontakt zu Philae haben, für Korrektur-Kommandos nutzen.

Und in welchem Fall muss das LCC nur abwarten und kann nicht korrigieren?
Ulamec: Was wir überhaupt nicht können, sind Bahnkorrekturen beim Absinken auf den Kometen. Die können wir nicht ausführen, denn Philae ist nicht steuerbar.

Es gibt kein Video in Echtzeit, dass die Landung ins Lander Control Center überträgt. Woher weiß das Team überhaupt, dass Philae gelandet ist?
Ulamec: Wir bekommen mit den Lander-Daten das „Touchdown“-Signal, das bei Philae die Harpunen auslöst und die Kaltgasdüse auf der Oberseite des Landers aktiviert. Ausgelöst wird dieses „Touchdown“-Signal wiederum in dem Moment, in dem das zentrale Element des Landegestells durch das Aufsetzen und den Anpressdruck nach innen gedrückt wird. Dann weiß der Lander: Die Harpunen müssen schießen, die ROLIS-Kamera kann ausgeschaltet werden.

Und wir wiederum wissen, ob Philae auf der Kometenoberfläche gelandet ist. Die Signale werden dann erst mal detaillierter analysiert: Sind die Harpunen gefeuert worden und wurden sie wieder zurückgezogen, um sie im Boden zu verankern? Die Bilder der Panoramakamera kommen relativ schnell, und wir sehen die Landschaft und vielleicht sogar den Horizont des Kometen. Dann ist alles gut und die weitere wissenschaftliche Sequenz kann beginnen.

Was könnte denn eine reibungslose Landung gefährden?
Ulamec: Das größte Risiko sehe ich in der Landung selbst. Wir haben eine relativ große Lande-Ellipse, etwa einen Quadratkilometer. Auf diesem Gebiet ist zwar viel flaches Gelände - deshalb haben wir es ausgewählt -, aber es gibt auch einen gewissen Prozentsatz des Gebiets, wo es steile Hanglagen oder einige Brocken gibt.

Wenn man Pech hat und mit einem Bein genau auf so einem Brocken oder einem Hang landet, kann der Lander umkippen. Ist der Hang zum Beispiel deutlich über 30 Grad geneigt, ist es sogar wahrscheinlich, dass Philae „purzelt“. Es ist schwer, vorherzusehen, was dann passiert. Landet er mit den Beinen nach oben und den Antennen nach unten, können wir nicht mit ihm kommunizieren. Das wäre dann auch das Ende der Lander-Mission.

Liegt er durch Zufall auf der Seite, würden wir versuchen, das Signal noch zu empfangen und könnten so einen Teil der Wissenschaft retten. Steht er auf dem Boden, hat sich aber nicht verankert, würden wir den Bohrer SD² und die Sonde MUPUS zunächst nicht einsetzen. Wohlmöglich würde man dadurch nämlich den Lander vom Boden heben und umstoßen. Kameras, Radarinstrument, Massenspektrometer im „Schnüffelmodus“ und das Magnetometer kann man dann aber dennoch betreiben.

Dass Philae den Kometen verfehlt und daran vorbeifliegt, ist ein extremer Fall. Da halte ich die Wahrscheinlichkeit für sehr gering. Der Orbiter müsste dann schon eine falsche Ausrichtung oder Position genau in dem Moment des Aussetzens haben.

Was passiert nach einer erfolgreichen Landung als Nächstes?
Ulamec: Dann beginnt die sogenannte erste wissenschaftliche Phase (First Science Sequence). Wenn wir wissen, wie und vor allem wo wir genau gelandet sind, werden wir sehr schnell eine Analyse machen, wie die tatsächliche Beleuchtung ist. Wir haben zwar typische Beleuchtungsszenarien für dieses Landegebiet berechnet, aber letztlich hängt es schon davon ab, ob Philae auf einem sonnigen Hang oder hinter einem schattenspendenden Brocken steht.

Das ist wichtig für die spätere wissenschaftliche Phase, in der die Batterien des Landers über die Sonnenenergie aufgeladen werden. Die erste wissenschaftliche Sequenz, in der alle Instrumente in Betrieb genommen werden, kann auch noch modifiziert werden. Weil wir eben wissen, wann die Sonne auf- und untergeht oder wann es Kommunikationsmöglichkeiten über den Orbiter zum Lander und weiter zur Erde gibt.

Wie geht es mit Philae weiter, wenn der Komet weiter in Richtung Sonne fliegt?
Ulamec: Der Lander ist von seinem Thermaldesign her so ausgelegt, dass er noch bis in eine Entfernung von zwei Astronomischen Einheiten von der Sonne, das sind rund 300 Millionen Kilometer, funktioniert. Dieser Punkt wird Ende März 2015 erreicht sein. Dann könnte es sein, dass der Lander überhitzt und somit nicht mehr betrieben werden kann. Es könnte aber auch sein, dass viel Staub auf die Kometenoberfläche zurückfällt und somit auch auf die Solarpaneele. Das würde bedeuten, dass Philae keinen Strom mehr erhält, um betrieben werden zu können.

Mehr zur Rosetta-Mission und der Kometenlandung in unserem Special.
(Deutsches Zentrum für Luft- und Raumfahrt (DLR), 12.11.2014 - NPO)
 
Printer IconShare Icon