• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Sonntag, 11.12.2016
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Forscher bremsen Parkinson bei Mäusen aus

Neuer Wirkstoff könnte auch beim Menschen schädliche Ablagerungen im Gehirn verhindern

Eine neue Substanz könnte den Verlauf der Parkinson-Krankheit bremsen: In Versuchen mit Mäusen verhinderte das Mittel die Bildung zellschädigender Ablagerungen im Gehirn. Als Folge blieben die Parkinson-kranken Tiere länger beweglich und nahezu symptomfrei. Die Forscher hoffen, damit auch beim Menschen Parkinson ursächlich behandeln zu können und so die Krankheit zu stoppen.
Behandelte Tiere hatten weniger Synuclein-Ablagerungen (braun)

Behandelte Tiere hatten weniger Synuclein-Ablagerungen (braun)

Die Parkinson-Krankheit beginnt schleichend. Dem amerikanischen Filmstar Michael J. Fox zuckte plötzlich bei Dreharbeiten der kleine Finger der linken Hand. Er überspielte es jahrelang erfolgreich. Typischerweise breitet sich das Zittern weiter aus, Muskeln werden steif, die Bewegungen verlangsamen sich. Doch wenn die ersten Symptome sichtbar werden, sind fatalerweise meist mehr als die Hälfte der Nervenzellen in der Substantia nigra abgestorben. Dieses Areal im Mittelhirn produziert den wichtigen Hirnbotenstoff Dopamin. Ablagerungen bestimmter Proteine führen dazu, dass die Nervenzellen dieses Areals bei Parkinson nach und nach zerstört werden.

Medikamentös können diese Ursachen von Parkinson bisher nicht behandelt werden. Genau hier haben die Forscher um Armin Giese von der Ludwigs Maximilians Universität München und Christian Griesinger vom Max-Planck-Institut für biophysikalische Chemie in Göttingen nun angesetzt. Es gelang ihnen, einen Wirkstoff zu entwickeln, der in Tests an Mäusen das Fortschreiten der Proteinablagerungen und der Nervenzellschädigung in bisher nicht erreichtem Ausmaß verzögert und so die krankheitsfreie Phase verlängert. „Das Besondere an unserer neuen Substanz ist, dass sie erstmals direkt an den Oligomeren ansetzt und ihre Bildung hemmt", erläutert Griesinger.

Molekülsuche mit Laserhilfe


Rund 20.000 wirkstoffartige Substanzen testeten die Mitarbeiter um Giese systematisch darauf, ob sie die Bildung krankheitstypischer Proteinverklumpungen verhindern können. Ihr Screening basiert auf einer äußerst empfindlichen Laser-Methode, die der Mediziner Giese vor Jahren bei Nobelpreisträger Manfred Eigen am Max-Planck-Institut für biophysikalische Chemie entwickelt hat. Schon in der ersten Stufe fanden sich unter den getesteten Molekülen einzelne interessante Kandidaten. Eine Substanz erwies sich schließlich nach weiteren systematischen Optimierungen als besonders effektiv.


Andrei Leonov, Chemiker in Griesingers Team, gelang es, daraus einen vielversprechenden Wirkstoff zu synthetisieren. Dieser ist in therapeutischen Dosen sehr gut verträglich, kann mit der Nahrung verabreicht werden und die Blut-Hirn-Schranke passieren. Inzwischen haben die Münchner und Göttinger Forscher den Wirkstoff namens Anle138b – nach den ersten beiden Buchstaben des Vor- und Nachnamens von Andrei Leonov – zum Patent angemeldet.

Mäuse bleiben länger beweglich und gesund


Anle138b könnte sich auch beim Menschen als therapeutischer Wirkstoff eignen. Dies lassen komplexe Versuchsreihen von Giese und seinen Mitarbeitern im Reagenzglas und am Tiermodell hoffen. Dazu kombinierten die Forscher nicht nur biochemische und strukturelle Methoden im Labor, sondern untersuchten die Wirkung von Anle138b auch an Parkinson-Mäusen in verschiedenen Tiermodellen. Erhielten Mäuse Anle138b, konnten sie ihre Bewegungen deutlich besser koordinieren als ihre unbehandelten kranken Artgenossen. „Wir können dies mit einer Art Fitnesstest direkt überprüfen“, erklärt Giese. „Wir setzen die Mäuse auf eine kleine rotierende Walze und messen die Zeit, wie lange die Nager darauf balancieren können“.

Generell war der Behandlungserfolg umso größer und die erkrankten Tiere lebten umso länger, je früher sie Anle138b über das Futter verabreicht bekamen. Doch nicht nur bei der Parkinson-Krankheit war die Substanz wirksam. „Auch bei Creutzfeldt-Jakob finden wir krankmachende Protein-Verklumpungen, die bei dieser Krankheit durch das sogenannte Prion-Protein verursacht werden“, erklärt Griesinger. „Auch hier verhindert Anle138b wirkungsvoll ihr Zusammenlagern und die Mäuse überleben deutlich länger“.

Hilfe auch gegen Alzheimer und Creutzfeldt-Jakob?


Die Ergebnisse der Forscher machen Hoffnung, dass Anle138b möglicherweise auch das fatale Verklumpen anderer Proteine wie des mit Alzheimer assoziierten Tau-Proteins stoppen könnte. Weitere Versuche der Göttinger und Münchner Forscher sollen dies testen. Anle138b ist deshalb für die medizinische Forschung ein wichtiges Werkzeug. Es erlaubt den Wissenschaftlern, direkt im Reagenzglas zu untersuchen, wie der Wirkstoff die Oligomere verändert und was ihr Zusammenlagern hemmt. Sie hoffen, damit wichtige Einblicke in die Mechanismen zu erhalten, wie neurodegenerative Krankheiten entstehen.

Bis heute werden durch die verfügbaren Medikamente nur die Symptome der Parkinson-Krankheit gelindert, indem sie die Funktion der verbliebenen Nervenzellen unterstützen. „Mit Anle138b könnten wir eine neue Klasse von Neuroprotektiva zur Hand haben, mit der sich möglicherweise Krankheiten wie Parkinson oder Creutzfeldt-Jakob bremsen oder sogar stoppen lassen“, erläutert Griesinger. Im nächsten Schritt soll Anle138b auf Toxizität an Nichtnagern getestet werden. Erst wenn diese Versuche positiv verlaufen, rücken klinische Studien am Menschen in greifbare Nähe. „Es ist aber immer ein langer Weg, bis eine neue Substanz beim Menschen in der Therapie erfolgreich eingesetzt werden könne“, betont Mediziner Giese. (Acta Neuropathologica, 2013; doi: 10.1007/s00401-013-1114-9)
(Max-Planck-Gesellschaft, 24.04.2013 - NPO)
 
Printer IconShare Icon