• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 22.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Hilfe für Crashtest-Dummies

Simulation bezieht Fertigungsfolgen mit ein und vermeidet Überraschungen beim Crashtest

Wie stabil ein Autobauteil wirklich im Ernstfall ist, zeigt sich oft erst im Crashtest – mit manchmal bösen Überraschungen für die Konstrukteure. Um dies zu ändern haben Forscher ein neues Simulationsverfahren entwickelt. Dieses geht nicht von den Materialen im Rohzustand aus, sondern berücksichtigt auch die Deformationen während der Fertigung und die daurch entstehenden Vorschädigungen.
Berechnete Schädigung in einer Crashsimulation

Berechnete Schädigung in einer Crashsimulation

Es gibt Bauteile, die Leben retten: Überschlägt sich ein Auto bei einem Unfall, spielt die „B-Säule“ eine tragende Rolle. Sie ist eine der Verbindungen zwischen Fahrzeugboden und Fahrzeugdach, die verhindern soll, dass sich die Fahrgastzelle zu stark verformt. Die Werkstoffe, aus denen die B-Säule gefertigt ist, müssen daher sehr hohen Ansprüchen genügen: Um Sprit zu sparen, sollen sie besonders leicht sein, gleichzeitig benötigen sie eine enorme Festigkeit und dürfen nicht brechen.

Doch wie sieht das optimale Bauteil aus? Mit Hilfe von unzähligen Versuchen, Simulationen und Crashtests hat sich die Automobilindustrie immer mehr an die Antwort auf diese Frage herangetastet. Nun geben Fraunhofer-Forscher der Entwicklung einen weiteren Impuls. Für gewöhnlich führen Ingenieure eine Reihe von virtuellen Tests durch. Dabei dienen bekannte Werkstoffeigenschaften als Wissensgrundlage.

Fertigung kann Eigenschaften verändern


„Die physikalischen und mechanischen Charakteristika der Materialien in ihrem Ausgangszustand kennen wir sehr gut“, erklärt Dr. Dong-Zhi Sun, Leistungsbereichsleiter am Fraunhofer-Institut für Werkstoffmechanik IWM. Doch im Laufe der Fertigungsprozedur verändern sich die Teile: Bei einer B-Säule etwa durchläuft der Werkstoff eine komplizierte Fertigungskette. Dabei verformt und dehnt er sich, kleine Schädigungen wie Porenbildung können entstehen.


„Sollen solche Teile in Fahrzeugen verbaut werden, muss man ihre Deformationsgeschichte bei der Herstellung berücksichtigen“, erklärt Sun. Deshalb haben die Forscher eine besondere Methode entwickelt: „Mit unserem Vorhersagemodell können wir Fertigungsprozesse besser simulieren“, sagt Sun. „Um die Herstellungsverfahren genau zu kennen, arbeiten wir mit Automobilbauern und Werkstoffproduzenten eng zusammen.“

Schädigung in einer Komponente aus hochfestem Stahl nach Crashtest

Schädigung in einer Komponente aus hochfestem Stahl nach Crashtest

Deformationen berechnet und analysiert


Dank der Simulation können die Forscher die Deformation des Bauteils während der Fertigung genau berechnen und analysieren. Somit wissen sie, welchen Einfluss der Prozess auf die Eigenschaften des Endproduktes hat, und ob durch das Herstellungsverfahren mögliche Vorschädigungen wie Porenbildung und Mikrorisse entstehen. Das Ergebnis der Prozesssimulation koppeln die Ingenieure mit einer Crash-Simulation, die mit einem neu entwickelten Werkstoffmodell durchgeführt wird.

Mit der neuen Methode lassen sich Bauteile mit optimalen Eigenschaften und einem verbesserten Crashverhalten entwickeln. „Wir können im Gegensatz zu herkömmlichen Crashsimulationen wesentlich präziser voraussagen, wie stark sich das Bauteil beim Crash verformen lässt, bevor es versagt“, sagt Sun.
(Fraunhofer Gesellschaft, 15.09.2009 - NPO)
 
Printer IconShare Icon