Neuartiges Material klebt selbst in kochendem Wasser oder im Magen Wackelpudding-Gel stopft Löcher - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Neuartiges Material klebt selbst in kochendem Wasser oder im Magen

Wackelpudding-Gel stopft Löcher

Das neuartige Hydrogel sieht aus wie Gummibärchen oder Wackelpudding; es entwickelt aber in saurem Milieu beachtliche Fähigkeiten zur Bindung und Selbstheilung. © Joshua Knoff / UC San Diego Jacobs School of Engineering

Ein neuartiges, selbstheilendes Gel verklebt in Sekundenschnelle Risse und Löcher – selbst in Säuren und kochendem Wasser. Es könnte daher zum Verschließen von Wunden im Inneren des Körpers eingesetzt werden, aber auch für selbstheilende Oberflächen und Dichtungsmittel in der Industrie. Das berichtet eine internationale Forschergruppe im Fachmagazin „Proceedings of the National Academy of Sciences“.

Das von den Forschern neu entwickelte Hydrogel sieht aus wie Wackelpudding, hält aber stabil wie ein Klettverschluss, sobald es mit sauren Flüssigkeiten in Berührung kommt. Möglich wird dies durch die spezielle Struktur des aus vernetzten Molekülen aufgebauten Gels. Zahlreiche kurze Seitenarme der langen Molekülketten wirken dabei wie Greiffinger: In saurem Milieu bilden sie von selbst Bindungen mit gegenüberliegenden Seitenarmen und schließen so den dazwischenliegenden Spalt.

Die Bindungen im Hydrogel sind jedoch reversibel: Sobald das Gel mit neutraler oder alkalischer Flüssigkeit in Berührung komme, löse sich die Bindung der Seitenarme wieder. „Der Zyklus von Binden, Trennen und wieder Binden kann mehrfach wiederholt werden, ohne dass das Material seine Fähigkeit zur Selbstheilung verliert“, schreiben Ameya Phadke von der University of California in San Diego und ihre Kollegen. Es genüge, das Gel mit entsprechenden Flüssigkeiten zu besprühen oder anderweitig den Säuregrad der Umgebung zu verändern.

Werden zwei Hydrogel-Stücke in saurem Milieu aneinander gehalten, verbinden sie sich innerhalb von Sekunden so fest, dass selbst kräftiges Ziehen sie nicht trennen kann. © Joshua Knoff / UC San Diego Jacobs School of Engineering

Selbstheilung gegen Lecks im Säuretank

Mehrere Anwendungsmöglichkeiten ihres Hydrogels haben die Forscher bereits praktisch getestet. So bohrten sie ein Loch in einen Plastikbehälter und beschichteten anschließend das Behälterinnere mit dem Hydrogel. Dann gaben sie Salzsäure hinein. „Das Hydrogel versiegelte das Loch sofort und verhinderte ein Austreten der Säure“, berichten die Wissenschaftler. Es könne daher gut als Dichtungsmittel beim Transport oder der Lagerung von Säuren eingesetzt werden.

In der Medizin könnte sich das Hydrogel als Wundverschluss beispielsweise bei Verletzungen oder Schäden der Magenschleimhaut eignen, sagen die Forscher. Denn das saure Milieu im Magen sorge von allein dafür, dass sich das Hydrogel binde und so Löcher verschließe. In einem Versuch applizierten sie das Gel auf die herauspräparierte Magenschleimhaut eines Kaninchens und stellten fest, dass es auch auf der Schleimhaut gut genug haftet, um als Magenpflaster eingesetzt zu werden.

Anzeige

Sogar als Hilfsmittel für die Arzneimittel-Dosierung könnte das neue Gel nach Ansicht der Forscher eingesetzt werden. In einem Test hatten sie das Antibiotikum Tetracyclin im Inneren eines Hydrogelstückchens eingeschlossen. Das Hydrogel wurde dann über mehrere Tage in ein starkes Säurebad ähnlich den Bedingungen der Magen gelegt. Die Hülle habe das Antibiotikum vor der Zersetzung geschützt, berichten die Wissenschaftler. Es sei über vier Tage hinweg nach und nach abgegeben worden.

Hydrogel schließt Lücke bei selbstheilenden Materialien

In den letzten Jahren haben Forscher bereits verschiedene selbstheilende Materialien entwickelt, darunter beispielsweise Autolacke, die von selbst Dellen oder Risse ausgleichen können. Was fehlte, seien aber Materialien, die auch in feuchter Umgebung oder sogar unter Wasser solche selbstheilenden Eigenschaften zeigen, sagen Phadke und ihre Kollegen. Das neue Hydrogel schließe nun diese Lücke.

Für ihre Studie hatten die Forscher zunächst in Computersimulationen berechnet, welche Form und Länge die freien Seitenarme der vernetzten Moleküle haben müssen, um optimal zu binden, sich aber auch wieder lösen zu können. Als optimal erwies sich dabei ein aus der Substanz Acryloyl-6-aminocaproinsäure (A6ACA) erzeugtes Polymer. Dieses erzeugten die Forscher dann im Labor, um damit praktische Tests durchzuführen. (Proceedings of the National Academy of Sciences, 2012; doi: 10.1073/pnas.1201122109)

(Proceedings of the National Academy of Sciences / dapd, 08.03.2012 – NPO)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Glas - Ein schwer durchschaubarer Stoff

News des Tages

Mondfinsternis

Heute Abend verdunkelt sich der Mond

Magersucht liegt auch in den Genen

Vormenschen: Muttermilch als Notversorgung

KI löst Zauberwürfel

Stonehenge: Steintransport mit Schweinefett?

Bücher zum Thema

Expedition Zukunft - Wie Wissenschaft und Technik unser Leben verändern von Nadja Pernat

Chemie erleben - von Edgar Wawra, Helmut Dolznig und Ernst Müllner

Nanotechnologie für Dummies - Spannende Entdeckungen aus dem Reich der Zwerge von Richard D. Booker und Earl Boysen

Wissen hoch 12 - Ergebnisse und Trends in Forschung und Technik von Harald Frater, Nadja Podbregar und Dieter Lohmann

Faszination Nanotechnologie - von Uwe Hartmann

Top-Clicks der Woche

Anzeige
Anzeige