Anzeige
Biologie

Wie bildet sich Sauerstoff in der Erdatmosphäre?

Neues Experiment enträtselt Mechanismus der Sauerstoffentstehung

Der Sauerstoff der Erdatmosphäre wird von Pflanzen und Algen gebildet. Forscher haben jetzt die O2-Bildung mit einer Zeitauflösung von nur zehn Millionstel Sekunden auf atomarer Ebene verfolgt und überraschende Ergebnisse über den bisher unbekannten Mechanismus der Sauerstoffentstehung erhalten. Über ihr neues Experiment, das noch vor kurzer Zeit als undurchführbar galt, berichten die Wissenschaftler in der aktuellen Ausgabe des Wissenschaftsmagazins „Science“.

{1l}

Angetrieben durch Sonnenenergie bauen Pflanzen, Algen und Blaualgen, so genannte Cyanobakterien, aus Kohlenstoffdioxid und Wasser einfache Kohlenhydrate auf. Dieser Vorgang, die Photosynthese, stellt den ersten Schritt in der Nahrungskette dar, von der letztendlich alle Lebewesen abhängen. Hierzu müssen dem Wasser zwei Elementarteilchen, nämlich Protonen und Elektronen, entnommen werden und es wird Sauerstoff freigesetzt.

Abfallprodukt Sauerstoff

Aus Sicht der photosynthetischen Organismen ist der Sauerstoff ein reines Neben-oder Abfallprodukt. Dieses Abfallprodukt der photosynthetischer Wasserspaltung hat jedoch zu dem Übergang von der kohlenstoffdioxidreichen Atmosphäre, wie sie vor drei Milliarden Jahren auf der Erde vorherrschte, zu der heutigen kohlenstoffdioxidarmen und sauerstoffreichen Luft geführt, die Tieren und Menschen das Atmen ermöglicht.

Seit langem versuchen Wissenschaftler zu verstehen, wie es Pflanzen möglich ist, aus zwei Wassermolekülen vier Protonen und vier Elektronen zu entnehmen und den molekularen Sauerstoff zu bilden. Angetrieben wird dieser Prozess durch die Absorption von vier Lichtteilchen oder Photonen, die in der Natur dem Sonnenlicht entstammen und in dem Experiment der Forscher Professor Holger Dau und Michael Haumann von der Freien Universität Berlin in Form kurzer Laserpulse zugeführt wurden. Der Ort der Wasserspaltung ist das Sauerstoff bildende Photosystem, ein Komplex aus Proteinen und Pigmenten sowie einer handvoll von Metallatomen. Interessanterweise spielen im Photosystem – wie auch in vielen anderen Enzymen – die an das Biomolekül gebundenen Metallatome eine besonders wichtige Rolle.

Anzeige

Ähnlich wie beispielsweise im Katalysator zur Umsetzung von Autoabgasen werden in zahlreichen Enzymen die besonderen chemischen Eigenschaften von Metallen genutzt. Bei der photosynthetischen Wasserspaltung sind es vier Manganatome.

Phostosystem immer gleich

In allen photosynthetischen Organismen ist das Sauerstoff bildende Photosystem im Wesentlichen gleich aufgebaut. Die Absorption von Lichtteilchen (Photonen) durch das Blattgrün (Chlorophyllmoleküle) löst Elektronenbewegungen zwischen Atomgruppen aus. Nach der Absorption von vier Photonen wird schließlich an einem Komplex aus den vier Manganatomen und Proteinen des Photosystems der molekulare Sauerstoff gebildet. Eine Mikrosekunde (µs) ist der millionste Teil einer Sekunde.

Die Veränderungen in dem Mangankomplex der Photosynthese, die nun unmittelbar verfolgt werden konnten, finden in dem Zeitbereich von zehn bis 5.000 µs nach Absorption eine Lichteilchens auf. Unter anderen werden Elektronen aus den Manganatomen entfernt und die Distanzen zwischen Mangan und seinem Nachbaratomen verringert sich um etwa zehn Pikometer, wobei ein Pikometer der Millionste Teil eines Millionstel Meters ist. Derartige Prozesse können mit Röntgenstrahlung beobachtet werden, wie sie an modernen Synchrotrons zur Verfügung steht.

In einem Synchrotron bewegen sich Elektronen oder Positronen mit hoher Geschwindigkeit durch einen Ring von mehreren hundert Metern Durchmesser, wobei intensive Röntgenstrahlung emittiert wird. Ursprünglich von Physikern zur Entdeckung von Elementarteilchen ersonnen, sind heute Synchrotrone ein unersetzliches Werkzeug in der Erforschung biologischer Strukturen und Prozesse.

Schlüsselexperiment am Synchrotron

Nach mehrjährigen Vorversuchen am Deutschen Elektronen Synchrotron (DESY) in Hamburg und am Berliner Elektronen Synchrotron (BESSY) führte die Forschungsgruppe die Schlüsselexperimente an einem der weltweit leistungsfähigsten Synchrotronstrahlungszentren durch, dem ESRF (European Synchrotron Radiation Facility) in Grenoble in den französischen Alpen. Hierzu wurden in monatelanger Arbeit aus Spinatblättern mehrere Tausend Photosystemproben präpariert und charakterisiert, bevor dann in Tag- und Nachtschichten ein Team von vier Wissenschaftlern eine Woche lang die Röntgenexperimente in Grenoble durchführen konnte.

Am europäischen Synchrotron in Grenoble wurde von den Berliner Wissenschaftlern die Sauerstoffbildung der Photosysteme mit einer Folge von Laserpulsen angetrieben. Gleichzeitig wurde die Absorption der Röntgenstrahlung durch die Manganatom des Photosystems detektiert.

So konnte die Geschwindigkeiten der einzelnen Schritte im Funktionszyklus präzise ermittelt werden. Überraschenderweise wurde ein neuer Zwischenzustand gefunden, bei dem nicht wie erwartet ein Elektron, sondern ein Proton dem Mangankomplex entzogen wird. Dieses Ergebnis führt zu einem neuen Bild der Sauerstoffbildung. Im klassischen Modell führt die Absorption von vier Lichteilchen zur Ansammlung von vier positiven Ladungen. Protonen spielen in diesem Bild keine zentrale Rolle. Zusammen mit zuvor erzielten Ergebnissen der Forschergruppe zeigen die Resultate der zeitaufgelösten Röntgenmessungen, dass dem Mangankomplex nicht nur Elektronen sondern auch Protonen gezielt entzogen werden. Wohl organisierte Protonenbewegungen ermöglichen also die Sauerstoffbildung.

Rätsel Wasserspaltung noch nicht endgültig gelöst

Das Rätsel der photosynthetischen Wasserspaltung ist noch nicht abschließend gelöst. Aber schon denken Wissenschaftlern über mögliche Technologien nach, die sich die Prinzipien der Natur zu Nutze machen.

Die Forscher um Dau und Haumann beteiligt sich an einer gemeinsamen Initiative neun deutscher Forschungsteams zum Thema „Grundlagen für einen biotechnologischen und biomimetischen Ansatz der Wasserstoffproduktion“. Das Bundesministerium für Bildung und Forschung wird die geplanten Arbeiten drei Jahre lang mit insgesamt rund zwei Millionen Euro fördern.

Auf dem Weg zum Biowasserstoff

Ziel ist die Bildung von Wasserstoff unter Nutzung von Solarenergie. Angetrieben durch Licht können Mikroorganismen nicht nur dem Wasser Elektronen and Protonen entnehmen. In Enzymen, die als Hydrogenasen bezeichnet werden, können aus den im Photosystem gebildeten Elektronen und Protonen auch Wasserstoffmoleküle (H2) geformt werden. Wasserstoff wird in nicht all zu ferner Zukunft Benzin und Diesel als Treibstoff in Kraftfahrzeugen ersetzen.

Die Gewinnung von „Bio-Wasserstoff“ stellt somit eine faszinierende Möglichkeit der Umwelt schonenden Wasserstoffproduktion dar. Die zu bewältigenden wissenschaftlichen und technischen Herausforderungen sind riesig und die Entwicklung eines technischen Systems könnte Jahrzehnte erfordern. Die Enträtselung der Wasserspaltung im Photosystem sowie der Wasserstoffbildung an den Metallzentren der Hydrogenasen könnte ein wichtiger erster Schritt sein.

(idw – Universität Berlin, 11.11.2005 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Phytohormone - Überlebenswichtige Botenstoffe im Pflanzenreich

Klimawandel - Bringt der Mensch das irdische Klima aus dem Gleichgewicht?

Bücher zum Thema

Einführung in die Ökologie - von Wolfgang Tischler

Die Atmosphäre der Erde - Eine Einführung in die Meterologie von Helmut Kraus

Atmosphäre im Wandel - Die empfindliche Lufthülle unseres Planeten von Thomas E. Graedel, Paul J. Crutzen

Wetter & Klima - Das Spiel der Elemente - Atmosphärische Prozesse verstehen und deuten von Dieter Walch und Harald Frater

Top-Clicks der Woche