Anzeige
Physik

Erster gezielter Verschränkungstausch bei Quanten

Verfahren für Quantencomputer erstmals erfolgreich im Labor umgesetzt

In dieser Ionenfalle wurden vier Ionen gefangen und paarweise verschränkt. © C. Lackner/ Universität Innsbruck

Eine wichtige Technik für den zukünftigen Quantencomputer, die so genannte deterministische Verschränkungsübertragung, haben Wissenschaftler jetzt erstmals realisiert. Wie sie in der Fachzeitschrift Nature Physics berichten, liegt die Besonderheit in der gezielten im Gegensatz zur ungezielten Übertragung von Informationen auf Quantenebene.

Von Verschränkung spricht man, wenn zwei einzelne Quantenobjekte auf bestimmte Weise miteinander verbunden sind. „Der Transfer von Verschränkung – auch Entanglement Swapping genannt – ist ein wichtiges Verfahren für die Quanteninformationsverarbeitung. Es wurde im Labor schon mehrfach demonstriert“, erklären Mark Riebe und Markus Hennrich vom Institut für Experimentalphysik der Universität Innsbruck. „Uns ist es nun aber erstmals gelungen, diese Verschränkungsübertragung gezielt durchzuführen, wir nennen dies einen deterministischen Verschränkungstausch.“

Gezielte Manipulation

Die Innsbrucker Forscher reihen dafür vier Ionen in einer elektromagnetischen Falle auf und präparieren sie gezielt mit Laserstrahlen. Zunächst werden jeweils zwei Ionen miteinander verschränkt. An jeweils einem Ion der beiden Paare wird dann eine sogenannte „Bell-Messung“ durchgeführt. Durch die Messung werden die zunächst nicht miteinander verschränkten Ionen nun verschränkt. Je nach Messergebnis werden die Ionen gezielt manipuliert um einen bestimmten verschränkten Zustand zu erzeugen. „Die quantenmechanische Verschränkung kann so übertragen werden“, machen Riebe und Hennrich deutlich. „Es werden dabei zwei Teilchen miteinander verschränkt, die keine gemeinsame Vergangenheit haben.“

Bausteine effizient vernetzen

Anwendung kann dieses Verfahren beispielsweise in zukünftigen Quantencomputern finden, wo die Verschränkung dazu verwendet wird, um effizienter zu rechnen als mit herkömmlichen Computern. Denn mit der Übertragung lässt sich die Verschränkung von zwei Teilchen mit hoher Güte auch auf Distanz erzeugen. „Die verschränkten Teilchen können von einander getrennt sein und werden dennoch über eine – wie Einstein es nannte – ’spukhafte Fernwirkung‘ miteinander verbunden“, erklärt der Leiter der Forschungsgruppe, Rainer Blatt. „Mit anderen Methoden ist es sehr schwierig, verschränkte Teilchen voneinander zu trennen ohne die Verschränkung zu verlieren.“

Entscheidend für Quantencomputer der nächsten Generation

Wichtig wird der Verschränkungstausch vor allem bei der nächsten Generation von Quantencomputern. Die verschiedenen Bausteine eines Quantencomputers könnten dann auf kleinen Mikrochips aufgebaut und die Teilchen dabei zwischen Rechen-, Speicher- und Übertragungselementen hin und her verschoben werden. „Das funktioniert allerdings nur, wenn die einzelnen Ionen als Träger der Qubits auch gezielt miteinander verschränkt und getrennt werden können“, betont Rainer Blatt. „Dieser Nachweis ist uns nun experimentell erstmals gelungen. Auf diese Weise können in Zukunft die verschiedenen Bereiche auf einem Quantencomputerchip effizient miteinander vernetzt werden.“

Anzeige

(Universität Innsbruck, 27.10.2008 – NPO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Bändereisenerz

Ur-Magnetfeld ohne festen Erdkern?

Krebs kann auch ohne DNA-Mutation entstehen

Waffentruhe eines mittelalterlichen Flaggschiffs geöffnet

Neues fossiles Riesenkänguru entdeckt

Diaschauen zum Thema

Dossiers zum Thema

Nanoröhrchen - Kohlenstoffwinzlinge als Bausteine für Computer der Zukunft

Bücher zum Thema

Sie irren, Einstein! - Newton, Einstein, Heisenberg und Feynman diskutieren die Quantenphysik von Harald Fritzsch

Abschied von der Weltformel - Die Neuerfindung der Physik von Robert B. Laughlin

Einsteins Spuk - Teleportation und weitere Mysterien der Quantenphysik von Anton Zeilinger

Skurrile Quantenwelt - von Silvia Arroyo Camejo

Top-Clicks der Woche