• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Sonntag, 26.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Erste Laufschule für Roboter

Universität Jena hat das weltweit erste Ganglabor für Roboter eingerichtet

Das Laufen auf zwei Beinen ist für uns alltäglich, für Roboter jedoch ist diese Fortbewegungsart noch immer ein Problem. Im weltweit ersten Ganglabor für Roboter wollen Wissenschaftler nun den mechanischen Konstruktionen ihre am Computer entwickelten und dem Menschen abgeschauten Bewegungsmodelle beibringen.
Humanoider Roboter

Humanoider Roboter

Ein leises Surren setzt ein, als sich die stabartigen Beine in die richtige Position bewegen. "Justieren" nennt das der Jenaer Bewegungswissenschaftler Moritz Maus und berührt noch kurz die runden Gummifüße, um die Reaktion des Roboters zu testen, bevor dieser losläuft. Dabei sieht der PogoWalker überhaupt nicht wie ein typischer Maschinenmensch aus: Zwei gelenkfreie Metallstäbe mit je einer Kugel am Ende und ein kastenähnlicher Überbau - das ist auf den ersten Blick alles. Beim näheren Hinsehen fallen einige Federn aus Metall auf sowie eine Menge dünner, schwarz-roter Kabel. Gebündelt ragen sie aus dem Metallgestell, dem ausgedehnten Oberkörper des Roboters, heraus. Sie enden verzweigt in verschiedenen Apparaturen an der Wand des Raumes.

Dieser wurde gerade erst eingerichtet und ist damit die neueste Errungenschaft des Lauflabors am Institut für Sportwissenschaft der Friedrich-Schiller-Universität Jena. "Wir haben hier das weltweit erste Ganglabor für Roboter eingerichtet", erklärt Arbeitsgruppenleiter Andre Seyfarth.

Menschliche Probanden als Modell


In dem neuen Labor, dessen Ausstattung mit etwa 70.000 Euro von der Deutschen Forschungsgemeinschaft (DFG) gefördert wurde, wollen die Wissenschaftler ihre am Computer entwickelten Bewegungsmodelle mechanisch umsetzen. Die Daten dafür stammen von Messungen aus dem Lauflabor. Dort bewegen sich auf einem großen Laufband menschliche oder tierische Probanden, während die Wissenschaftler mit unzähligen Sensoren jede einzelne Bewegung messen.


Zweibeiniger Laufroboter "PogoWalker" im Ganglabor

Zweibeiniger Laufroboter "PogoWalker" im Ganglabor

„Unser Ziel ist es, die menschliche Fortbewegung bis ins kleinste Detail zu verstehen", macht Seyfarth deutlich. Aus ihren Messdaten und Beobachtungen haben die Jenaer Wissenschaftler Modelle erarbeitet und testen mit Hilfe der Roboter ihre Funktionalität. Die Voraussetzung dafür wurde jetzt mit dem neuen Robotiklabor geschaffen, wo den Wissenschaftlern ein eigens für die Roboterforschung hergestelltes Laufband zu Verfügung steht.

Stabilität als Hauptproblem


Doktorand Maus untersucht in dem neuen Labor jetzt ein Problem, das bei realen Robotern bisher große Schwierigkeiten bereitet: die Stabilität bei hohen Geschwindigkeiten. Hierfür hat er eine Strategie entwickelt, die den Oberkörper stabilisiert, indem die Bodenreaktionskraft stets auf einen
bestimmten, virtuellen Drehpunkt im Oberkörper gerichtet ist. "Wir konnten bereits zeigen, dass das Drehmoment, welches dazu in der Hüfte aufgebracht werden muss, beim Gehen sehr gut mit dem tatsächlich beim Menschen beobachteten Hüftdrehmoment übereinstimmt", erzählt Moritz Maus.

Mit dem PogoWalker testet der Physiker die Funktionalität seiner Theorie. Noch wird der aus zwei gefederten Stabbeinen und einem ausgedehnten Oberkörper bestehende Roboter auf dem Laufband von zwei Glasplatten flankiert. Dadurch werden seitliche Bewegungen verhindert, so dass der PogoWalker gewissermaßen zweidimensional läuft. Irgendwann wollen die Jenaer Wissenschaftler die Glasscheiben entfernen und die Stabilisierung auch in drei Dimensionen testen.

"Statt großen Füßen hat der PogoWalker nur einen punktförmigen Bodenkontakt", erläutert Maus. "Trotzdem hält er in dem von uns entwickelten Modell seine Stabilität auch bei Geschwindigkeiten über 25 km/h." „Wenn wir zeigen können, dass elastische Strukturen zusammen mit unserer Theorie der Oberkörperstabilisierung zu solidem Laufverhalten führen, wäre das ein bahnbrechendes Ergebnis", ist Arbeitsgruppenleiter Seyfarth überzeugt.

Anwendung auch für bessere Beinprothesen


Seine Forschungsgruppe beschäftigt sich darüber hinaus mit dem Hüpfen als Teil der Bewegung, dem Einfluss der verschiedenen Beinmuskeln und dem Aufspüren der neuronalen Aspekte beim Laufen. "Wir betreiben hier Grundlagenforschung, denn nur wenn wir die biologischen Grundlagen eindeutig verstehen, können wir sie in effektive technische Systeme übernehmen", ist Seyfarth überzeugt. "Irgendwann", so hofft er, "werden unsere Erkenntnisse auch dabei helfen, die perfekten Beinprothesen zu bauen."
(Universität Jena, 30.07.2008 - NPO)
 
Printer IconShare Icon