Anzeige
Chemie

Nanopartikel machen Brennstoffzellen effektiver

Neue Katalysatorklasse mit platinreicher Schale und platinarmem Kern

Wasserstoff-Brennstoffzellen gelten als Automobil-Antrieb der Zukunft, bisher sind sie allerdings noch nicht konkurrenzfähig. Amerikanische Wissenschaftler haben jetzt eine neue Klasse von Elektrokatalysatoren entwickelt, die helfen könnte, die Leistung von Brennstoffzellen zu erhöhen. Die aktive Phase des Katalysators bilden Nanopartikel mit einer platinreichen Schale und einem Kern aus einer Kupfer-Cobalt-Platin-Legierung. Sie zeigt eine bisher unerreichte Aktivität bei der Reduktion von Sauerstoff.

{1l}

Wasserstoff-Brennstoffzellen sind eine gezähmte Version der Knallgasreaktion, bei der Sauerstoff und Wasserstoff explosionsartig zu Wasser reagieren. Damit das Ganze sanft verläuft und die freiwerdende Energie in Form von Strom abgezapft werden kann, finden die Reaktionen der beiden Reaktionspartner in einer Brennstoffzelle als zwei räumlich getrennte Teilreaktionen statt. In der einen Halbzelle nimmt Sauerstoff an einer Elektrode Elektronen auf (Reduktion), in der anderen gibt Wasserstoff Elektronen ab (Oxidation). Die Zellen sind durch Polymerelektrolyt-Membranen verbunden, über die der Stoffaustausch läuft.

Neues Material entwickelt

Damit die Reaktion laufen kann, müssen die Elektroden katalytisch wirken. Material der Wahl für die Elektrode der Sauerstoff-Teilreaktion ist seit Jahrzehnten das Edelmetall Platin. Nun haben Peter Strasser und sein Team von der Universität von Houston in Texas ein neues Material entwickelt: Eine Legierung aus Platin, Kupfer und Cobalt, die in Form von Nanopartikeln auf Trägern aus Kohlenstoff aufgebracht ist.

Die eigentliche katalytisch aktive Phase entsteht erst in situ: Wird eine zyklisch wechselnde Spannung an die Elektrode angelegt, lösen sich an der Oberfläche der Nanopartikel selektiv die weniger edlen Metallatome, vor allem Kupfer, aus der Legierung heraus. So entstehen Nanopartikel mit einem Kern aus der ursprünglichen kupferreichen Legierung und einer fast nur Platin enthaltenden Schale.

Anzeige

„Die sauerstoffreduzierende Aktivität unseres neuen elektrokatalytischen Nanomaterials ist bisher unerreicht – etwa vier- bis fünfmal höher als beim reinen Platin. Zudem konnten wir zeigen, wie man dieses Material in einer richtigen Brennstoffzelle in situ einsetzt und aktiviert“, sagt Strasser. Die beobachtete Oberflächenzunahme der Nanopartikel reicht als Erklärung nicht aus.

Kürzere Abstände zwischen den Atomen

Strasser vermutet, dass spezielle veränderte strukturelle Charakteristika der Oberfläche eine Rolle spielen. Obwohl die Partikeloberfläche hauptsächlich aus Platin besteht, scheinen die Abstände zwischen den Platinatomen hier kürzer zu sein als bei reinem Platin. Diese Stauchung kann durch den Legierungskern stabilisiert werden, der aufgrund des Kupfers und Cobalts noch stärker verkürzte Platin-Abstände zeigt.

Zudem scheint der kupferreiche Kern die elektronischen Eigenschaften der Platinschale zu beeinflussen. Theoretische Betrachtungen haben ergeben, dass der Sauerstoff so optimal an die Partikeloberfläche binden kann und sich leichter reduzieren lässt.

(idw – Gesellschaft Deutscher Chemiker, 24.10.2007 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Bändereisenerz

Ur-Magnetfeld ohne festen Erdkern?

Krebs kann auch ohne DNA-Mutation entstehen

Waffentruhe eines mittelalterlichen Flaggschiffs geöffnet

Neues fossiles Riesenkänguru entdeckt

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Erneuerbare Energie - von Thomas Bührke und Roland Wengenmayr

Welt der Elemente - von Hans-Jürgen Quadbeck- Seeger

Wasserstoff und Brennstoffzellen - Die Technik von morgen von Sven Geitmann

Faszination Nanotechnologie - von Uwe Hartmann

Genius - Task Force Biologie - Strategiespiel zu umweltwelt- verträglichem Handeln

Fair Future - Ein Report des Wuppertal Instituts

Erneuerbare Energien und Alternative Kraftstoffe - Mit neuer Energie in die Zukunft von Sven Geitmann

Nanotechnologie und Nanoprozesse - Einführung, Bewertung von Wolfgang Fahrner

Top-Clicks der Woche