• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 17.01.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Natriumpumpe reguliert Herzbildung

Ionengradient sorgt für korrekte Ausbildung der Herzgewebe

Dass unser Herz schlägt, haben wir winzigen Ionenpumpen in den Membranen der Herzzellen zu verdanken. Doch diese Pumpen können noch mehr, wie Forscher jetzt herausgefunden haben. Im Embryo erzeugen sie ein Konzentrationsgefälle der Ionen, das die korrekte Ausbildung des Herzgewebes erst ermöglicht und reguliert.
Das Herz schlägt nur dann, wenn elektrisch geladene Teilchen über die Membran der Herzzellen hin- und hertransportiert werden. Die Natrium-Kalium-Pumpe pumpt Kalium-Ionen in das Zellinnere und lässt Natrium-Ionen aus der Zelle ausströmen. Sie reguliert indirekt unter anderem auch die Konzentration von Calcium-Ionen, die wiederum den Herzschlag steuern. Patienten mit Herzschwäche erhalten Medikamente, die an dieser Natriumpumpe angreifen, um ihren Herzschlag zu stabilisieren.

Modell eines menschlichen Herzens

Modell eines menschlichen Herzens

Jetzt haben Forscher des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch eine neue Funktion der Natriumpumpe entdeckt. Die von ihr ausgelöste veränderte Ionenkonzentration innerhalb und außerhalb der Zellen sorgt im Embryo dafür, dass sich die Herzzellen während der Organentwicklung an ihrer Ober- und Unterseite unterscheiden. Forscher sprechen dabei von Zellpolarität. Sie ist für die Funktion des Organs lebenswichtig. Weiter sorgt die Natriumpumpe dafür, dass die Herzzellen aneinandergeheftet bleiben. Fehlt die Natriumpumpe, entwickelt sich kein Herz. Die Arbeit der Doktorandin Elena Cibrián-Uhalte und Dr. Salim Seyfried (beide MDC) und Forschern der University of California Los Angeles, USA, ist jetzt im Journal of Cell Biology erschienen.

Einfluss auf Polarisierung der Herzzellen


Bisher hatten Zellbiologen bereits eine Reihe von Signalwegen identifiziert, die die Organentwicklung steuern. „Dass Ionengradienten, die von der Natriumpumpe erzeugt werden, diese fundamentalen zellbiologischen Prozesse regulieren, nämlich die Polarisierung und das Zusammenhaften von Zellen, ist neu und sehr überraschend“, erläutert der Entwicklungsbiologe Seyfried die Ergebnisse aus seinem Labor. Er erforscht die Entwicklung von Wirbeltieren, zu denen auch der Mensch gehört, unter anderem an Zebrafischen. Sie sind nur wenige Zentimeter groß und ihre Embryonen sind durchsichtig, so dass die Forscher jede Zelle unter dem Mikroskop beobachten können.


Seyfried interessiert sich vor allem dafür, wie sich die Zellen, die die äußeren und inneren Oberflächen des Körpers auskleiden, die Epithelzellen, während der Organentwicklung im Organismus ausrichten. Diese Zellpolarität ist für die Funktion der Organe lebenswichtig. „Der Hauptpunkt der jetzigen Arbeit ist, dass der Ionengradient die Zellpolarität reguliert“, betont der Forscher. „Allerdings wissen wir noch nicht, wie genau sich die Ionengradienten auf die Ausrichtung der Herzmuskelzellen während der frühen Entwicklung auswirken. Außerdem ist es für uns aus technischen Gründen nicht möglich, die Ionenkonzentrationen in den winzigen Herzen, die nur wenige tausendstel Millimeter groß sind, zu messen“, ergänzte er.

Ähnliche Aufgabe auch bei anderen Geweben?


Die Forscher in Berlin vermuten, dass sich die Defekte in der Natriumpumpe nicht nur auf den Zusammenhalt von Herzmuskelzellen sondern auch auf die Entwicklung der Blut-Hirn-Schranke und der Netzhaut auswirken. Sollte sich diese Vermutung bestätigen, hätte die Natriumpumpe eine zentrale Rolle bei der Entwicklung unterschiedlicher Typen von Epithelzellen innerhalb des gesamten Organismus und nicht nur des Herzens.
(Max-Delbrück-Centrum für Molekulare Medizin (MDC), 16.01.2007 - NPO)
 
Printer IconShare Icon