• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 28.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Fliegen-Gen erklärt Diabetes

Zentrale Stellschraube im Insulinstoffwechsel identifiziert

Ein neues Gen, das eine wichtige Rolle bei der Entstehung der Zuckerkrankheit spielen könnte, haben jetzt Bonner Wissenschaftler entdeckt. Fliegen, bei denen die Erbanlage defekt ist, sind zudem erheblich kleiner als ihre Artgenossen und leben deutlich länger. Das Gen scheint eine so zentrale Bedeutung zu haben, dass es sich seit einer knappen Milliarde Jahren kaum verändert hat: Es kommt in Fliegen, in ähnlicher Form aber auch in Mäusen und im Menschen vor, so die Forscher in der aktuellen Ausgabe des Wissenschaftsmagazins "Nature".
DNA

DNA

Manchmal ähnelt Wissenschaft einem Staffellauf: 1996 fand der Biochemiker Professor Waldemar Kolanus in Säugetieren eine Gruppe von Zelleiweißen, die Cytohesine, und beschrieb ihre Funktion bei der Immunabwehr. Zwei seiner Kollegen im neuen interdisziplinären LIMES Zentrum (Life & Medical Sciences) der Universität Bonn fanden nun eine ganz neue und völlig unerwartete Funktion dieser Eiweiße mit großer Relevanz für die Medizin. "Wir wollten wissen, ob es Cytohesine auch in der Taufliege Drosophila gibt und welche Aufgaben sie dort haben", erinnert sich der Entwicklungsbiologe Professor Michael Hoch.

Seine Mitarbeiter und er wurden tatsächlich fündig: Sie entdeckten ein Protein, das den Säugetier-Cytohesinen sehr ähnelt. Interessanter noch: Taufliegen, bei denen die Bauanleitung für dieses Gen defekt ist, sind kleinwüchsig. Die Forscher nannten das Cytohesin denn auch "Steppke". "Der Größeneffekt zeigte uns, dass 'Steppke' eine Schlüsselrolle im Insulinstoffwechsel spielen könnte - eine völlig neue Funktion für Cytohesine", sagt Hoch.

Neue Medikamente gegen Diabetes


Wie groß Pflanzen oder Tiere maximal werden können, ist in ihren Genen festgeschrieben. Doch ob sie dieses Potenzial ausschöpfen, wird durch eine Reihe weiterer Faktoren beeinflusst. Einer davon ist das Insulin.


Säugetiere schütten dieses Hormon nach dem Essen als Reaktion auf den steigenden Blutzuckerspiegel aus. Über eine komplizierte Signalkette sorgt es dafür, dass Muskeln und Organe Blutzucker aufnehmen. Aber nicht nur das: Die Insulin-Signalkaskade entscheidet während des Wachstums auch über Größe und Zahl der Körperzellen. "Steppke" übernimmt in dieser Signalkaskade augenscheinlich eine Schlüsselfunktion.

"Taufliegen-Larven werden in den ersten drei Tagen nach dem Schlüpfen 200mal schwerer", erläutert Hoch. "Wenn bei ihnen das Steppke-Gen mutiert ist, wachsen sie deutlich langsamer." Eine Reihe weiterer Beobachtungen stützen die These, dass "Steppke" für den Insulinstoffwechsel von Drosophila extrem wichtig ist. Wenn es in Säugetieren ein Cytohesin mit ähnlicher Funktion gäbe, wäre das beispielsweise für die Diabetes-Forschung hoch interessant.

"Insulin-Resistenz" auch bei Mäusen erzeugt


Parallel zu Hoch hatte Professor Michael Famulok einen Wirkstoff hergestellt, der Cytohesine hemmt, das so genannte SecinH3. "Wir haben diesen Inhibitor an Mäuse verfüttert", erläutert der Biochemiker. Die Nagetiere verfügen nicht wie Taufliegen über ein Cytohesin, sondern gleich über vier. Famulok wollte herausfinden, ob sie im Insulinstoffwechsel der Maus eine ähnliche Schlüsselrolle einnehmen wie "Steppke" in der Fliege - und wurde fündig: "Die Leberzellen der mit SecinH3 behandelten Tiere reagierten bei weitem nicht mehr so stark auf Insulin, wie sie es sollten." Mediziner kennen diesen Effekt: Eine derartige "Insulin-Resistenz" gilt als Warnsignal für einen entstehenden Typ II-Diabetes.

Allein in Deutschland leiden sechs Millionen Menschen an dieser Form der Zuckerkrankheit. Sie wird durch falsche Ernährung und Bewegungsmangel ausgelöst - Tendenz: steigend. Famulok hält nun auch neue Medikamente für möglich: "Es gibt eine Klasse von Schaltermolekülen, die von Cytohesinen aktiviert werden. Diese Aktivierung ist offenbar nötig für die Signalweiterleitung. Wenn es uns gelingt, die Schaltermoleküle mit einem geeigneten Wirkstoff zu stimulieren, könnten wir damit die Insulin-Resistenz vielleicht rückgängig machen." Bei der Suche nach einer solchen Arznei könnte eine neue Methode helfen, die Famulok im Nature-Paper beschreibt. Mit ihrer Hilfe hat seine Arbeitsgruppe auch schon den Hemmstoff SecinH3 gefunden.

Langes Leben dank Gendefekt?


Der gemeinsame Vorfahr von Taufliege und Maus lebte vor mindestens 900 Millionen Jahren. Dennoch sind sich "Steppke" und das entsprechende Maus-Cytohesin so ähnlich, dass SecinH3 gegen beide wirkt. "Wir haben den Hemmstoff an unsere Fliegenlarven verfüttert", erklärt Hoch. "Sie entwickelten sich dann genauso, als wäre ihr 'Steppke'-Gen defekt."

Die Erbanlage hat aber noch eine ganz andere Wirkung, die die Phantasie der Forscher beflügelt: Fliegen, bei denen "Steppke" defekt ist, leben deutlich länger als ihre Artgenossen. "Ein spannender Effekt", findet Hoch. "Das müssen wir unbedingt weiter untersuchen."
(idw - Universität Bonn, 14.12.2006 - DLO)
 
Printer IconShare Icon