• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 28.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Schnelle MRT ohne teure Magneten

Universitätsklinikum Freiburg

Ein internationales Forscherteam um Jan-Bernd Hövener aus der Medizinphysik der Radiologischen Klinik am Universitätsklinikum Freiburg hat eine neue, kostengünstige Methode für die Magnetresonanztomographie (MRT) entwickelt. Im Gegensatz zu gängigen Verfahren erfordert sie keine starken und teuren Magneten und erzeugt trotzdem auch in sehr schwachen Magnetfeldern ein viel stärkeres MRT-Signal, als es derzeit mit den stärksten Magneten möglich ist.
Zum ersten Mal ist es nun gelungen, diese Signalverstärkung kontinuierlich bereitzustellen und damit hochaufgelöste Mehrfach-Aufnahmen innerhalb von wenigen Minuten zu erlauben. Dies könnte der entscheidende Schritt sein, um MRT auf lange Sicht auch für mobile Einsätze zugänglich zu machen. Die Wissenschaftler publizierten ihre Forschungsergebnisse in der renommierten Fachzeitschrift Nature Communications.

Die Magnetresonanztomographie ist ein Schnittbildverfahren, mit dem Weichgewebestrukturen sehr gut dargestellt werden können. In einem künstlichen Magnetfeld werden die magnetischen Momente der Wasserstoffatome im Körpergewebe ausgerichtet und durch Radiofrequenzwellen angeregt, woraufhin sie wieder in ihren ursprünglichen Zustand zurückkehren. Dabei werden je nach Struktur und Wassergehalt des Gewebes unterschiedliche Signale ausgesendet, anhand derer das Schnittbild berechnet wird.

Die magnetischen Momente der Wasserstoffatome sind jedoch im Vergleich zur thermischen Energie des Gewebes so schwach, das sich nur ein winziger Anteil ausrichtet und somit messen lässt. Im Magnetfeld der Erde ist etwa eins von sieben Milliarden Wasserstoffatomen sichtbar, der Rest ist unsichtbar für das MRT. Das 100.000-fach stärkere, künstliche Magnetfeld der klinischen MR-Tomographen erhöht diese Ausrichtung zwar und erlaubt damit hochauflösende Aufnahmen. Jedoch werden auch mit diesen sehr teuren Spezialmagneten nur wenige Millionstel aller Wasserstoffatome sichtbar.

Versuch mit Parawasserstoff


Hövener und seine Kollegen wählten daher einen anderen Ansatz, um das MRT-Signal zu erhöhen: Die sogenannte Hyperpolarisation bewirkt, dass sich ein weit größerer Anteil der Wasserstoffatome magnetisch ausrichtet. Bisherige Versuche in dieser Richtung waren stets mit dem Problem behaftet, dass sich die Atome nur einmal ausrichten ließen und diese Ausrichtung durch die MRT-Aufnahme wieder zerstört wurde.

Das Forscherteam aus Freiburg und York (UK) setzte daher auf Parawasserstoff: Normales Wasserstoffgas, dessen Atomkerne sich in einem besonderen Quantenzustand befinden, kann mittels einer chemischen Austauschreaktion andere Moleküle magnetisch ausrichten – und zwar im richtigen Magnetfeld immer wieder aufs Neue. Dieser dauerhafte Polarisierungseffekt steht beliebig lange zur Verfügung, erneuert sich nach jeder Messung und macht Mehrfach-Aufnahmen möglich. Selbst in einem sehr schwachen Magnetfeld, das mit einer einfachen Batterie erzeugt werden kann, entsteht so ein hundert Mal stärkeres Signal als in kliniküblichen MRT-Anlagen.

Diagnostik könnte profitieren


„Es ist sehr aufregend, diesen neuartigen physikalischen Effekt zu erforschen“, sagt Hövener, der in der Medizinphysik der Radiologischen Klinik des Universitätsklinikums Freiburg forscht und Mitglied des Deutschen Konsortiums für Translationale Krebsforschung ist. Zahlreiche Anwendungen in der Chemie und der Molekularbiologie sind denkbar. Auf lange Sicht hofft der Freiburger Medizinphysiker, dass die kontinuierliche Hyperpolarisation für die biomedizinische Forschung nutzbar wird:

„Wasserstoffgas scheint für Menschen gut verträglich zu sein. Der Weg ist noch weit, doch die medizinische Diagnostik könnte entscheidend profitieren“, so Hövener. Kostengünstige MRT-Geräte für Screenings seien ebenso denkbar wie tragbare MRTs für die Diagnose vor Ort. Kleinere, günstige Magnetspulen, die mit Solarzellen betrieben werden, könnten die MRT-Technologie zudem auch in entlegenen Gebieten zugänglich machen.
(Universitätsklinikum Freiburg, 18.12.2013 - NPO)
 
Printer IconShare Icon