Forscher entschlüsseln einen Faktor für effiziente Thermoelektrizität Atome rappeln im Kristall - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Forscher entschlüsseln einen Faktor für effiziente Thermoelektrizität

Atome rappeln im Kristall

Atomare Hanteln im Zinkantimon-Kristallgitter verringern dessen Wärmeleitfähigkeit. Das erklärt die guten thermoelektrischen Eigenschaften dieser Legierung, fanden Festkörperforscher des Forschungszentrums Jülich heraus. Blaue Kugeln: Antimonatome, rote Kugeln: Zinkatome. © Forschungszentrum Jülich

Rappelnde Atompaare verringern die Wärmeleitfähigkeit kristalliner Materialien besonders gut: Dies haben jetzt Physiker des Forschungszentrums Jülich herausgefunden. Schwere, in Kristallen frei schwingende, hantelförmige Gebilde könnten daher künftig eine Schlüsselfunktion einnehmen bei der Entwicklung von Materialien mit geringer Wärmeleitfähigkeit und gleichzeitig hoher elektrischer Leitfähigkeit.

Damit ließe sich der Wirkungsgrad thermoelektrischer Generatoren steigern, die aus Temperaturdifferenzen Strom herstellen. Bisher ungenutzte Abwärme könnte so zunehmend wirtschaftlich interessant werden, so die Wissenschaftler in der aktuellen Online-Ausgabe der Fachzeitschrift „Physical Review Letters“.

„Unsere Erkenntnisse öffnen ganz neue Wege auf der Suche nach immer effizienteren thermoelektrischen Materialien“, erläutern Werner Schweika und Raphaël Hermann vom Jülicher Institut für Festkörperforschung. Das Ziel ist klar: Abwärme, die heute noch ungenutzt verloren geht, etwa in Müllverbrennungsanlagen, Kraftfahrzeugen oder Blockheizkraftwerken, so vollständig wie möglich zur Energierückgewinnung zu nutzen, um gleichzeitig zum Klimaschutz beizutragen.

Wirkungsgrad verbesserungswürdig

Thermoelektrische Materialen erzeugen eine elektrische Spannung, wenn sie einem Temperaturgefälle ausgesetzt sind. Dieses Phänomen wird in thermoelektrischen Generatoren genutzt, um elektrische Energie zu produzieren. Noch ist der Wirkungsgrad der Materialien bei der Umwandlung in Strom recht schlecht und liegt bei maximal acht Prozent.

Zum Vergleich: Kohlekraftwerke haben einen Wirkungsgrad von bis zu 45 Prozent. Das begrenzt den Einsatz der Generatoren bisher auf spezielle Anwendungen, etwa in der Raumfahrt. Um einen besseren Wirkungsgrad zu erzielen, sind Materialen nötig, die elektrischen Strom gut leiten, Wärme dagegen schlecht. Die Herausforderung besteht darin, dass gute Stromleiter in der Regel ebenso gute Wärmeleiter sind. Solche Materialien zeichnen sich auf atomarer Ebene durch eine regelmäßige Gitterstruktur aus. Elektrizität breitet sich darin in Form von Elektronenströmen aus, Wärme in Form von Gitterschwingungen, die sich wellenförmig durch das Material bewegen. Unregelmäßigkeiten in der Gitterstruktur, etwa fehlende Atome, können zwar die Wärmeleitfähigkeit verringern, beeinträchtigen aber auch die elektrische Leitfähigkeit.

Anzeige

Schweika und Hermann haben nun entschlüsselt, wie der atomare Bauplan eines altbekannten guten thermoelektrischen Materials die Kombination der scheinbar unvereinbaren Eigenschaften ermöglicht. Die Jülicher Forscher haben mit Hilfe von Neutronenstreuexperimenten und Wärmekapazitätsmessungen die Ursache für die geringe Wärmeleitfähigkeit einer Zinkantimon-Legierung untersucht.

Unbekannte Form dynamischer Unordnung

Dabei stießen sie auf eine bisher unbekannte Form so genannter dynamischer Unordnung, die die Ausbreitung von Wärme in diesem Halbmetall behindert: Zinkantimon hat eine regelmäßige Kristallstruktur, in der atomare Hanteln mit relativ großem Gewicht lose eingebettet sind. Wenn Wärmewellen durch das Material wandern, werden auch die Hanteln in Schwingung versetzt. Auf die Wärmewellen hat das einen ähnlich störenden Effekt wie Wellenbrecher vor einer Küste auf das Meerwasser. Der Clou: Die elektrische Leitfähigkeit wird nicht behindert.

Bereits 2003 konnte Hermann nachweisen, dass einzelne Atome, eingefangen in kristallinen Käfigstrukturen, unabhängig von den Kristallgittern schwingen und die Wärmeleitfähigkeit verringern. Jetzt erbrachten er und seine Kollegen den Beweis, dass käfigartige Strukturen keine Voraussetzung für solche lokalisierten Schwingungen sind.

(idw – Forschungszentrum Jülich, 20.09.2007 – DLO)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Nanoröhrchen - Kohlenstoffwinzlinge als Bausteine für Computer der Zukunft

Diamanten - Hochkarätiges aus dem Bauch der Erde

Klimawandel - Bringt der Mensch das irdische Klima aus dem Gleichgewicht?

News des Tages

Weißer Zwerg

Beringter Weißer Zwerg gibt Rätsel auf

Optische Täuschung durch Verzögerungs-Effekt

Sport verschiebt die innere Uhr

Wie klimafreundlich ist Laborfleisch?

Alaska: Mini-Beutler lebte zwischen Dinosauriern

Bücher zum Thema

Faszination Nanotechnologie - von Uwe Hartmann

Nanotechnologie und Nanoprozesse - Einführung, Bewertung von Wolfgang Fahrner

Wetterwende - Vision: Globaler Klimaschutz von Hartmut Graßl

Atmosphäre im Wandel - Die empfindliche Lufthülle unseres Planeten von Thomas E. Graedel, Paul J. Crutzen

Top-Clicks der Woche

Anzeige
Anzeige