• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Mittwoch, 18.10.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Angeregtes Zusammenspiel im Halbleiter

Resonanzen in der Terahertz-Strahlung

Physiker haben herausgefunden, wie sich Halbleitermaterialien verhalten, die elektromagnetischer Strahlung im Terahertz-Frequenzbereich ausgesetzt sind. Wie die Forscher theoretisch vorhersagen konnten, beruhen die gemessenen Resonanzen auf zwei Wechselwirkungen, mit denen die im Halbleiter eingeschlossenen Elektronen auf die Strahlung reagieren: einer Kombination von kontinuierlichen Oszillationen und diskreten Energieübergängen.
Herkömmliche Silizium-Halbleiter sind nicht magnetisch

Herkömmliche Silizium-Halbleiter sind nicht magnetisch

Die Wissenschaftler um Professor Stephan W. Koch von der Universität Marburg stellen ihre Ergebnisse zusammen mit Kollegen aus Dresden und Wien in der aktuellen Ausgabe der Fachzeitschrift „Physical Review Letters“ vor.

Viele Anwendungen


In den letzten Jahren hat eine rasante Entwicklung in der Terahertz-Physik stattgefunden, einem Gebiet, das sich mit elektromagnetischer Strahlung hoher Frequenz zwischen Infrarot und Mikrowellenbereich beschäftigt. Während man bis vor wenigen Jahren noch von der so genannten Terahertz-Lücke im elektromagnetischen Spektrum sprach, hat die Terahertz-Strahlung heute bereits eine Vielzahl von technischen Anwendungen gefunden.

„Aber auch in der Grundlagenforschung hat sich die Terahertz-Spektroskopie zu einem wichtigen Werkzeug entwickelt“, erläutert Koch, „zum Beispiel, um interne Übergänge zu analysieren und zu manipulieren, die in Festkörpern und Molekülen stattfinden."


Eingesperrte Elektronen


Ein solcher interner Übergang kann unter anderem bei Elektronen erzeugt werden, die in einer sehr dünnen Schicht eingesperrt sind, einem so genannten Quantenfilm. Dabei macht man sich einen interessanten quantenmechanischen Effekt zunutze: Während sich die Elektronen parallel zur Schicht frei bewegen und somit beliebige Energien annehmen können, ist die Bewegung senkrecht zur Schicht quantisiert, das heißt, die Elektronen können nur ganz bestimmte Energien annehmen. Man sagt, es komme zur Bildung von diskreten Energieniveaus.

Ein Quantenfilm lässt sich unter anderem durch die Einbettung einer dünnen Halbleiterschicht zwischen zwei andere Halbleitermaterialien realisieren. In diesem Fall beträgt die Energiedifferenz der beiden untersten Energieniveaus typischerweise gerade einige Terahertz.

Wie Elektronen mit dem Feld wechselwirken


Trifft nun ein elektromagnetisches Feld mit geeigneter Frequenz auf den Quantenfilm, so existieren zwei grundlegend verschiedene Möglichkeiten der Wechselwirkung der Elektronen mit dem Feld: Einerseits kann die Energie der Terahertz-Strahlung dazu benutzt werden, einen internen Übergang zu induzieren, das heißt ein Elektron in das nächst höhere Energieniveau anzuheben.

Zum anderen werden die Elektronen durch das momentan anliegende elektrische Feld in der Quantenfilmebene beschleunigt, so dass sie eine oszillatorische Bewegung mit der Frequenz des Terahertz-Feldes vollführen. Beide Prozesse senden wiederum charakteristische Terahertz-Strahlen aus, die miteinander interferieren und das ursprüngliche Feld verändern.

Physikern des Forschungszentrums Dresden-Rossendorf um Professor Manfred Helm ist es nun gelungen, diese Änderungen des Terahertz-Feldes an einem geeigneten System zu messen. Dabei zeigten die Spektren des abgestrahlten Feldes ein charakteristisches Verhalten, das stark an die nach ihrem Entdecker benannten Fano-Resonanzen erinnert. Sie tauchen immer dann auf, wenn in einem physikalischen System ein diskreter Energieübergang an ein Kontinuum von Übergängen gekoppelt ist.

Wichtige neue Erkenntnisse


Die Marburger Halbleiterphysiker Koch, Professor Mackillo Kira und Daniel Golde konnten mithilfe der von ihnen entwickelten mikroskopischen Theorie dieses charakteristische Verhalten eindeutig dem Zusammenspiel der beiden genannten Wechselwirkungsprozesse zuordnen.

„Damit wurde zum ersten Mal ein Verfahren gefunden, welches es ermöglicht, diese grundlegenden Prozesse in einem Experiment direkt zu identifizieren und voneinander zu unterscheiden“, erklärt Koch.

Darüberhinaus ermöglicht das Verfahren, die relativen Stärken der beteiligten Wechselwirkungsprozesse im betrachteten System quantitativ zu bestimmen. Ein bemerkenswertes Resultat ist, dass sich die Methode nicht nur auf die Energieaufspaltungen in Quantenfilmen anwenden lässt, sondern prinzipiell auf alle internen Übergänge in Halbleiterstrukturen.
(idw - Universität Marburg, 01.04.2009 - DLO)
 
Printer IconShare Icon