Anzeige
Astronomie

„Braune Zwerge“ bringen Planeten hervor

Vergleichbare Entstehungsprozesse wie bei normalen Sternen beobachtet

Das Diagramm zeigt mit dem Weltraumteleskop Spitzer aufgenommene Infrarotspektren der zirkumstellaren Staubscheiben von vier Braunen Zwergsternen im Sternbild Chamaeleon (die mittleren vier Kurven). Zum Vergleich zeigt die oberste Kurve das typische von interstellarem Staub emittierte Infrarotspektrum (oben) und das von den Staubteilchen im Kometen Hale-Bopp (unten), die an den Wachstums- und Kristallisationsprozessen der zirkumstellaren Staubscheibe um die junge Sonne teilgenommen haben. Die Kurven sind nach der Form der Spektren angeordnet und zeigen, dass die kleinsten Teilchen im interstellaren Raum vorkommen, die größten im Kometen. In den zirkumstellaren Scheiben der Braunen Zwerge kommen unterschiedliche Stadien des Wachstums und der Kristallisation vor. © Max-Planck-Institut für Astronomie

Neueste Beobachtungen mit dem Weltraumteleskop SPITZER der NASA haben ergeben, dass die Planetenbildung zumindest im Ansatz auch in der Umgebung von Braunen Zwergen, also „misslungenen Sternen“, abläuft. Damit erweist sich der Prozess der Planetenbildung als universeller und robuster als bisher vermutet, wie das internationale Forscherteam in der aktuellen Ausgabe von Science Express berichtet.

Sechs junge Braune Zwerge aus dem 520 Lichtjahre entfernten Sternentstehungsgebiet im südlichen Sternbild Chamaeleon hat das Astronomenteam aus deutschen, amerikanischen und italienischen Forschungsinstituten untersucht. Die Objekte sind zwischen einer und drei Millionen Jahre alt, ihre Massen betragen zwischen dem 40- und dem 70fachen der Jupitermasse. Mit SPITZER nahmen die Forscher detaillierte Spektren im infraroten Licht auf, aus denen sich Informationen über die Größen der strahlenden Teilchen und deren mineralogische Zusammensetzung ableiten lassen.

Geburtsstätte von Planeten

Die Analyse der Daten ergab in fünf der sechs untersuchten Fälle, dass in den zirkumstellaren Scheiben dieser „misslungenen Sterne“ die Staubteilchen aneinander haften und bereits größere Klumpen aus Olivin, einem siliziumhaltigen Mineral, und kristalline Strukturen bilden. Solche Gebilde sind aus Untersuchungen der Scheiben junger normaler Sterne bekannt und finden sich auch in Kometen – den Überresten aus der Bildungsphase unseres eigenen Planetensystems. Offenbar laufen also in den zirkumstellaren Scheiben der jungen Braunen Zwerge dieselben Wachstums- und Kristallisationsprozesse ab, die bei normalen Sternen einschließlich unserer Sonne am Anfang der Planetenbildung stehen.

{2l}

Weiterhin fanden sich Hinweise auf ein Abflachen der zirkumstellaren Scheiben, das beim Einsetzen der Wachstumsprozesse in der Staubkomponente auch zu erwarten ist. „Mit SPITZER können wir die Planetenbildung unter ganz unterschiedlichen Bedingungen untersuchen. Unsere Beobachtungen zeigen, dass die ersten Schritte der Planetenbildung in geringerem Maße von den Details abhängen als bisher vermutet“, sagte Daniel Apai, der gegenwärtig am Steward-Observatorium in Tucson forscht und Mitglied des NASA Astrobiology Institute’s Life and Planets Astrobiology Center ist. Und Kees Dullemond vom Max-Planck-Institut für Astronomie betont: „Dieses Ergebnis ist auch deshalb so wichtig, weil es die Theorien über Planetenbildung einschränkt und uns damit tiefere Einblicke in diesen Prozess ermöglicht“.

Anzeige

Diese Beobachtungsergebnisse zeigen, das es sich bei zukünftigen Missionen zur Suche nach extrasolaren Planeten, wie die Mission DARWIN der ESA und der Terrestrial Planet Finder (TPF) der NASA, lohnen könnte, auch die Umgebung Brauner Zwerge nach Planeten zu untersuchen.

Braune Zwerge als Strahlungsquelle

Braune Zwerge entstehen wie ihre massereicheren Geschwister, die normalen Sterne, durch den Kollaps interstellarer Gas- und Staubwolken. Bei einem solchen Zusammenbruch bildet sich eine zentrale Verdichtung, eingebettet in eine rotierende Scheibe aus Gas und Staub. Solche zirkumstellaren Scheiben strahlen entsprechend ihrer Temperatur im infraroten Spektralbereich. Mit dem Weltraumteleskop SPITZER wurden sie in der Umgebung zahlreicher junger Brauner Zwerge entdeckt.

Der Kollaps der Gas- und Staubwolken endet, wenn der Anstieg von Druck, Temperatur und Dichte in der zentralen Verdichtung zum Einsetzen des Wasserstoffbrennens (Kernfusion) führt – damit wird die zentrale Verdichtung zu einem eigentlichen Stern. Reicht jedoch ihre Masse nicht aus, um die für Kernfusion erforderlichen Bedingungen herbeizuführen, so entsteht ein Brauner Zwerg: Er wird sich keine weiteren Energiequellen mehr erschließen können und bloß die durch den Kollaps erzeugte Kompressionswärme langsam abstrahlen.

(Max-Planck-Institut für Astronomie, 24.10.2005 – AHe)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Bändereisenerz

Ur-Magnetfeld ohne festen Erdkern?

Krebs kann auch ohne DNA-Mutation entstehen

Waffentruhe eines mittelalterlichen Flaggschiffs geöffnet

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Big Eyes - Riesenteleskope und die letzten Rätsel im Kosmos

Bücher zum Thema

Die ersten drei Minuten - Der Ursprung des Universums von Steven Weinberg, Friedrich Griese (Übersetzer)

Die Geburt des Kosmos aus dem Nichts - Die Theorie des inflationären Universums von Alan Guth

Die fünf Zeitalter des Universums - Eine Physik der Ewigkeit von Fred Adams und Greg Laughlin

Planeten beobachten - Praktische Anleitung für Amateurbeobachter und solche, die es werden wollen von Günter D. Roth

Chaos im Universum - Astereoiden und Kometen - Fremde Welten - Theorien über das Chaos von Joachim Bublath

Top-Clicks der Woche