• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Mittwoch, 29.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Mikrobe liebt es tödlich

Genom eines einzelligen Anpassungskünstlers enthüllt Überlebensstrategie

Der Einzeller Natronomonas pharaonis gedeiht dort, wo alles andere Leben stirbt – in ätzend alkalischen und salzigen Tümpeln. Jetzt haben Wissenschaftler sein Genom entschlüsselt, um die Überlebensstrategie zu enthüllen, mit denen die zu den Archaen gehörende Mikrobe unter tödlichen Umweltbedingungen noch bestens gedeihen kann.
Fundort des Einzellers Natronomonas pharaonis

Fundort des Einzellers Natronomonas pharaonis

Archaeen, kleine Einzeller, sind für die Wissenschaft besonders interessant, weil sie unter extremen Umweltbedingungen wie hohen Salzkonzentrationen, hohen pH-Werten oder hohen Temperaturen leben können. Die Überlebenskünstler der Natur sind für die Forscher Modellorganismen, denn aus ihren Lebensweisen kann man Rückschlüsse auf die ersten Organismen der Erde ziehen. Die Wissenschaftler studieren an den nur fünf hundertstel Millimeter großen stäbchenförmigen Zellen Mechanismen, die den Einzellern das Überleben ermöglichen. Forscher des Max-Planck-Instituts für Biochemie unter der Leitung von Professor Dieter Oesterhelt haben jetzt mit Methoden der Genomik und Proteomik in Kombination mit physiologischen Experimenten gezeigt, wie sich die erstaunlichen Leistungen der Extremisten erklären lassen.

Friedhelm Pfeiffer, Bioinformatiker in der Forschungsgruppe, hat mit seinen Mitarbeitern für die halophilen (griechisch: "salzliebenden") Archaeen eine Datenbank HaloLex angelegt, in der die Gen- und Protein-Daten der erforschten Organismen mit Informationen über Struktur und Funktion verknüpft werden. Als neuestes Genom haben nun Michaela Falb, Friedhelm Pfeiffer, Peter Palm, Karin Rodewald, Volker Hickmann, Jörg Tittor und Dieter Oesterhelt die Erbinformation des halophilen Archaeons Natronomonas pharaonis entshclüsselt und zugänglic gemacht. Diese besteht aus rund 2,6 Millionen Basenpaaren und kodiert für die Synthese von 2.843 Proteinen.

Doppelt lebensfeindlich


Natronomonas pharaonis muss mit doppelt lebensfeindlichen Bedingungen zu Recht kommen. Es wurde in stark alkalischen Teichen mit einem pH-Wert von etwa 11 und mit extremer Salzkonzentration von über 300 Gramm Salz pro Liter Wasser gefunden. Der hohe pH-Wert entspricht einer konzentrierten Waschmittellauge und der Salzgehalt etwa dem des Toten Meeres.


Im Gegensatz zu anderen salztoleranten Organismen haben die halophilen Archaeen extrem hohe Salzkonzentrationen im Zellinneren. Proteine, entscheidende funktionelle Bestandteile lebender Zellen, fallen normalerweise bei diesen Salzkonzentrationen aus. Doch ein erhöhter Anteil an sauren Aminosäuren-Bausteinen im Proteom sorgt dafür, dass die Proteine auch bei hohen Salzkonzentrationen noch stabil bleiben. Als Anpassung an den extrem hohen äußeren pH-Wert besitzt N. pharaonis auch einen moderat erhöhten pH-Wert in der Zelle.

Atmungskette intakt


Besondere Strategien werden für die zellulären Bestandteile benötigt, die in direktem Kontakt zur umgebenden Salzlauge stehen: die Zellmembran und jene Proteine, die außerhalb der Zelle funktionieren müssen. Wichtige Funktionen des Energiestoffwechsels, wie beispielsweise die Atmungskette, sind in die Zellmembran eingebettet und müssen den widrigen äußeren Umständen angepasst sein. Trotz detaillierter bioinformatischer Analyse des Genoms blieb noch offen, ob N. pharaonis eine funktionierende Atmungskette besitzt und welche Ionen dabei eine Rolle spielen.

Die Bioinformatikerin Michaela Falb und der Biochemiker Jörg Tittor konzipierten deshalb zusätzliche experimentelle Studien, die zeigten, dass Natronomonas pharaonis tatsächlich eine funktionierende Atmungskette besitzt, die erstaunlicherweise und im Gegensatz zu anderen, unter alkalischen Bedingungen wachsenden Organismen mit einem "normalen" Proton funktioniert. Damit konnten die Max-Planck-Forscher das bisher gültige Paradigma widerlegen, dass Organismen unter alkalischen Bedingungen auf andere Ionen (z.B. Natrium, Na+) ausweichen müssen.

Aminosäuresynthese trotz hohem pH-Wert


Ein hoher pH-Wert führt außerdem normalerweise zur Verarmung an Ammonium. Da Ammonium-Stickstoff ein wesentlicher Baustein für Aminosäuren ist, müsste der Winzling eigentlich Probleme bei deren Synthese haben. Falb entdeckte nun im Genom mehrere Wege zur optimalen Ausnutzung des Stickstoffvorkommens: durch Aufnahme und Verstoffwechslung von Nitrat und Harnstoff, sowie effiziente Aufnahme von Ammonium.

Auch bei einer anderen Fragestellung trug die Zusammenarbeit von theoretisch und experimentell arbeitenden Wissenschaftlern Früchte: Nachdem die Bioinformatiker voraussagen konnten, dass Natronomonas pharaonis fast alle Vitamine und Aminosäuren selbst herstellen kann, konnte das Wachstumsmedium für die Aufzucht der Einzeller erheblich vereinfacht werden.

"Der Vergleich der von uns studierten halophilen Archaeen zeigt uns, dass diese Organismen eine hohe Plastizität besitzen, mit der sie sich an die variablen extremen Umweltbedingungen anpassen können. Die Genügsamkeit von Natronomonas pharaonis mit der Möglichkeit zur Vereinfachung des Nährmediums eröffnet neue Möglichkeiten für die experimentelle Untersuchung des Stoffwechselnetzwerks", erklärt Dieter Oesterhelt.
(MPG, 13.10.2005 - NPO)
 
Printer IconShare Icon