• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Mittwoch, 20.09.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Riesenbakterium verblüfft Mikrobiologen

Mikrobe aus dem Stechlinsee trägt hunderte verschiedene Genome in sich

Verblüffende Entdeckung: Eine im Stechlinsee vorkommende Mikrobe entpuppt sich als "multiple Persönlichkeit". Denn sie ist nicht nur 30.000 Mal größer als normale Bakterien, sie trägt auch hunderte verschiedener Genome in sich. Geht man nur nach dem Erbgut, vereint ein einziges dieser Riesenbakterien die Gene mehrere verschiedener Arten in sich. Warum dieses Bakterium diese interne Vielfalt mit sich herumträgt, ist bisher unklar und auch wie sie es schafft, trotzdem als Art sie selbst zu bleiben.
Das Riesenbakterium Achromatium oxaliferum, hier ein Exemplar aus eimem Tümpel in der Nähe des Bodensees.

Das Riesenbakterium Achromatium oxaliferum, hier ein Exemplar aus eimem Tümpel in der Nähe des Bodensees.

Eigentlich gilt für Bakterien: je kleiner, desto besser. Denn die Mikroben verlassen sich fürs Fressen und sonstigen Stoffwechsel weitgehend auf die Diffusion. Werden sie zu groß, funktioniert dieses passive Transportsystem nicht mehr. Umso überraschter waren daher Mikrobiologen, als sie vor einigen Jahren die ersten Riesenbakterien entdeckten. Mittlerweile sind schon mehrere solcher bis zu 0,75 Millimeter großen Bakterien bekannt, auch im Süßwasser.

Riesenbakterium im Stechlinsee


Das größte Süßwasserbakterium der Welt, Achromatium oxaliferum, kommt sogar in deutschen Seen vor: Es lebt unter anderem im Sediment des Stechlinsees in Brandenburg. Die Riesenmikrobe ist 30.000 Mal größer als normale im Wasser lebende Bakterien und dank ihrer Kalkeinlagerungen mit dem bloßen Auge erkennbar. Sie gewinnt ihre Energie, indem sie den im Schlamm vorkommenden Schwefel oxidiert.

So weit, so bekannt. Doch was Forscher um Danny Ionescu vom Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB) in Berlin herausgefunden haben, ist selbst für erfahrene Mikrobiologen erstaunlich. Für ihre Studie hatten sie erstmals das Erbgut einzelner Zellen von Achromatium oxaliferum aus dem Stechlinsee sequenziert.


Erbgut verschiedener Bakterien in nur einer Zelle


Dabei zeigte sich: Eine einzelne Zelle dieses Riesenbakterium kann bis zu 300 Genome enthalten – jedes davon auf mehrere Chromosomen aufgeteilt. Das Überaschende daran: Es handelt sich nicht um bloße Kopie des Bakterienerbguts, wie man es bisher schon von einigen Schwefelbakterien kannte. Stattdessen trägt Achromatium hunderte ganz unterschiedliche Genome mit sich herum – es vereint quasi das Erbgut vieler Mikroben in nur einer Zelle.

Die unterschiedlichen Fluoreszenzfarben zeigen an, dass diese Zelle verschiedene Genome in sich trägt.

Die unterschiedlichen Fluoreszenzfarben zeigen an, dass diese Zelle verschiedene Genome in sich trägt.

"Dieses Ergebnis war überraschend!", sagt Ionescu. "Die Vielfalt allein der 16S-rRNA war extrem groß." Wie die Forscher herausfanden, kann eine Zelle dieses Riesenbakteriums Chromosomen in sich tragen, die zu ganz verschiedenen Achromatium-Arten zu gehören scheinen. "Jede Einzelzelle beherbergt eine genetische Vielfalt, die sonst typischerweise zwischen verschiedenen Arten einer Gattung zu finden sind", berichten die Wissenschaftler.

Wie behält Achromatium seine Identität?


Warum dieses Riesenbakterium so viele verschiedene Genome in sich trägt, ist bisher unklar. Die Forscher vermuten aber, dass es ihm diese interne genetische Vielfalt wahrscheinlich leichter macht, sich an wechselnde Umweltbedingungen anzupassen: Es ruft einfach jeweils die passenden Gene ab.

Rätselhaft ist auch, wie es Achromatium oxaliferum schafft, trotzdem seine Identität zu bewahren. denn wenn sich eine Achromatium-Zelle teilt, werden die Genome vermutlich zufällig auf die Tochterzellen verteilt. Das müsste eigentlich dazu führen, dass sich die Nachkommen immer unähnlicher werden – und sogar verschiedenen Arten angehören. Doch offenbar sorgt die Selektion dafür, dass dies nicht passiert. Wie genau, muss nun erforscht werden.

Konsequenzen auch für Probenanalysen


Die Entdeckung dieser multiplen Genome bei Achromatium könnte auch Konsequenzen für die mikrobiologische Analyse von Boden- und Wasserproben haben. Denn bisher wird die Mikrobenvielfalt darin anhand der DNA/RNA-Sequenzen bestimmt. Die Artbestimmung erfolgt daher heute meist rein genbasiert.

Wenn nun aber in der Probe ein polyploides Bakterium vorkommt, dann gaukeln seine Gene eine größere Artenvielfalt vor als wirklich vorhanden ist: Wo man einst 1000 verschiedene Bakterienarten vermutete, sind in Wirklichkeit vielleicht nur noch 100 verschiedene Arten anzutreffen. (Nature Communications, 2017; doi: 10.1038/s41467-017-00342-9)
(Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), 08.09.2017 - NPO)
 
Printer IconShare Icon