• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 24.10.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Starke Magnetfelder verändern Metall

Anzahl der Ladungsträger verändert sich

Die Anzahl der Elektronen in Metallen wie etwa Kupfer ist selbst von großen Magnetfeldern nicht beeinflussbar. Für die Verbindung CeBiPt, einem so genannten Halbmetall aus Cerium, Wismut und Platin, gilt diese bisher als unumstößlich geltende Eigenschaft jedoch nicht. Das haben Physiker vom Forschungszentrum Rossendorf (FZR), in Kooperation mit dem Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) herausgefunden. Erstmalig konnte damit diese wichtigste Kenngröße eines Metalls durch das Anlegen eines hohen Magnetfeldes geändert werden.
Oszillograph misst Strom, Spannung und Feldstärke

Oszillograph misst Strom, Spannung und Feldstärke

Ein Metall unterscheidet sich von einem Nichtmetall durch das Vorhandensein frei beweglicher Träger der elektrischen Ladung, Elektronen, die nicht an "ihr Atom" im Festkörper gebunden sind. Sie transportieren den elektrischen Strom. Daher ist die Anzahl der Ladungsträger pro Volumen eine der wichtigsten Kenngrößen eines Metalls. Beim Übergang in einem magnetisch geordneten Zustand kann sich diese Kenngröße sprunghaft ändern.

Festkörperphysiker waren sich aber bisher einig: ein hohes Magnetfeld kann diese Anzahl in einem nichtmagnetischen Metall nur unwesentlich beeinflussen. Von einem hohen Magnetfeld spricht man ab einigen Tesla (Tesla ist die physikalische Einheit für die Magnetfeldstärke). Im Vergleich zu einem Tesla ist das Erdmagnetfeld mit knapp 50 Mikrotesla um das zwanzigtausendfache schwächer. Gewöhnliche nichtmagnetische Metalle zeigen sich selbst von hohen Magnetfeldern unbeeindruckt.

Bei dem exotischen Metall CeBiPt ist das anders, wie Professor Joachim Wosnitza vom FZR-Institut Hochfeld-Magnetlabor Dresden zusammen mit der Doktorandin Nadezda Kozlowa vom IFW Dresden und in Kooperation mit weiteren Physikern herausgefunden hat. Oberhalb von etwa 25 Tesla ändern sich die elektronischen Eigenschaften von CeBiPt ohne Anzeichen magnetischer Ordnung drastisch. Dabei scheinen sich zwei Effekte zu überlagern, die es zum ersten Mal erlaubten, eine Änderung der Ladungsträgerzahl durch Anlegen eines Magnetfeldes an ein nichtmagnetisches Metall zu beobachten. Zum Einen sind in diesem Material nur sehr wenige Elektronen am elektrischen Transport beteiligt und zum Anderen befinden sich Cer-Atome in der Verbindung.


Die grundlegend neue Vermutung ist nun, dass die Wirkung des angelegten Magnetfeldes auf die beweglichen Ladungsträger durch die Cer-Atome noch verstärkt wird, wodurch entgegen bisherigen Erfahrungen bei einem bestimmten Wert des angelegten Feldes eine dramatische Änderung der Ladungsträgerzahl gemessen werden kann. Inwiefern diese Vorstellung zutrifft, wird gegenwärtig weiter gesucht.

Durch Experimente in Magnetfeldern bis zu 50 Tesla am Hochfeld-Pilotlabor im IFW Dresden konnte Nadezda Kozlova im Rahmen ihrer Doktorarbeit zeigen, dass sich die elektronische Struktur von CeBiPt bei etwa 25 Tesla ändert. Dieses überraschende Ergebnis ist auf sehr großes Interesse der Festköperphysiker gestoßen.
(idw - Forschungszentrum Rossendorf, 11.08.2005 - DLO)
 
Printer IconShare Icon