• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 12.12.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad

Helmholtz-Zentrum Berlin für Materialien und Energie

Ultradünne CIGSe-Solarzellen sparen Material und Energie bei der Herstellung. Allerdings sinkt auch ihr Wirkungsgrad. Mit Nanostrukturen auf der Rückseite lässt sich dies verhindern, zeigt eine Forschungsgruppe vom HZB zusammen mit einem Team aus den Niederlanden. Sie erzielten bei den ultradünnen CIGSe-Zellen einen neuen Rekord bei der Kurzschlussstromdichte.
Eine interessante Klasse von Solarzellen besteht aus den Elementen Kupfer, Indium, Gallium und Selen, die in einer Chalkopyrit-Kristallstruktur angeordnet sind. Dünnschicht-CIGSe-Solarzellen können im Labor Wirkungsgrade von bis zu 22,6 Prozent erreichen und besitzen im Vergleich zu den marktführenden Solarmodulen aus Silizium einige Vorteile. Unter anderem lassen sie sich mit weniger Energie herstellen und haben geringere Einbußen bei Verschattung.

Indium eingespart


Die Massenproduktion von CIGSe-Zellen würde jedoch große Mengen Indium erfordern. Indium zählt aber zu den seltenen Elementen, deren Vorkommen weltweit begrenzt sind. Ein interessanter Ansatz ist daher, CIGSe-Dünnschichten noch deutlich dünner zu machen. Während eine typische CIGSe-Dünnschicht-Solarzelle 2-3 Mikrometer dick ist, misst eine „ultradünne“ Schicht weniger als 0,5 Mikrometer und kommt für die gleiche Modulfläche mit einem Bruchteil an Indium aus. Allerdings absorbieren ultradünne Solarzellen auch wesentlich weniger Licht, was den Wirkungsgrad stark verringert.

Nanostrukturierte Rückkontakte fangen das Licht ein


Nun hat die Forschungsgruppe Nanooptix am HZB von Prof. Martina Schmid gezeigt, wie sich die Absorptionsverluste in ultradünnen CIGSe-Schichten größtenteils verhindern lassen. Gemeinsam mit dem Team von Prof. Albert Polman am Institute for Atomic and Molecular Physics (AMOLF), Niederlande, haben sie nanostrukturierte Rückkontakte entwickelt, die das Licht einfangen: Diese Nanostruktur besteht aus einem regelmäßigen Muster aus Siliziumoxidpartikeln auf einem ITO-Substrat.

Kombiniert mit einer reflektierenden Schicht erreichte die beste ultradünne CIGSe-Zelle eine Kurzschlussstromdichte von 34,0 mA/cm2. Dies ist der bislang höchste Wert, der jemals an einer ultradünnen CIGSe-Zelle gemessen wurde. Mehr noch: Dies entspricht bereits 93 Prozent der Kurzschlussstromdichte der Rekord-CIGSe-Zelle mit üblicher Dicke.

Nanostrukturen verbessern auch elektrische Eigenschaften


Außerdem verbessern die Nanostrukturen auch die elektrischen Eigenschaften der Zelle und steigern den Wirkungsgrad im Vergleich zu Zellen ohne nanostrukturierte Rückkontakte auf das Anderthalbfache. „Damit haben wir gezeigt, dass Nanostrukturen bei ultradünnen CIGSe-Solarzellen sowohl die optische Absorption verstärken als auch einige elektrische Aspekte günstig beeinflussen“, sagt Guanchao Yin, Erstautor der Publikation.

„Diese Ergebnisse belegen, dass optoelektronische Nanostrukturen eine interessante Möglichkeit sind, um hohe Wirkungsgrade mit deutlich weniger Materialeinsatz zu erreichen“, sagt Martina Schmid, die nun als Professorin für „Experimentelle Physik“ an die Universität Duisburg wechselt. „Mit der Nachwuchsgruppe habe ich die Chance erhalten, selbstständig zu forschen und meine Karriere zu starten. Dafür danke ich dem HZB und der Helmholtz-Gemeinschaft.“

Die Arbeit ist in Advanced Optical Materials (5, 2017) veröffentlicht und auf der Titelseite erschienen.
(Helmholtz-Zentrum Berlin für Materialien und Energie, 27.03.2017 - NPO)
 
Printer IconShare Icon