Anzeige
Physik

Spinnenseide aus der Retorte

Wissenschaftler stellen Fäden synthetisch her

Spinnennetz © IMSI MasterClips

Wissenschaftlern ist es erstmals gelungen, den natürlichen Herstellungsprozess von Spinnenseide-Fäden im Labor nachzubauen. Damit können jetzt die genauen physikalischen und chemischen Bedingungen erforscht werden, unter denen sich aus den Spinnenseide-Proteinen ein Faden bildet.

Diese Erfindungen der Natur sind extremen mechanischen Belastungen gewachsen und zudem außerordentlich elastisch. Die neuen Ergebnisse haben grundlegende Bedeutung für die Herstellung künstlicher Biomaterialien, so die Forscher um den Biophysiker Sebastian Rammensee von der Technischen Universität München (TUM) in der Fachzeitschrift „Proceedings of the National Academy of Sciences“ (PNAS).

Dehnfähig und reißfest

Ein Spinnennetz ist besonders dehnfähig, aber auch extrem reißfest. Nur so kann es die Wucht von Insekten auffangen, die in vollem Flug aufprallen. Diese besonderen elastischen Eigenschaften verdankt das Netz den Fäden, aus denen es gesponnen wurde. Könnte man die Spinnenseide in industriellem Maßstab produzieren, wäre sie als Werkstoff für viele Anwendungen interessant.

So eignen sich Spinnenfäden zum Beispiel hervorragend zum Vernähen von Wunden, da die Fasern vom Immunsystem des Körpers nicht abgestoßen werden. Auch durchtrennte Nervenstränge lassen sich mit Spinnenseide reparieren, wobei das Material offenbar dazu beiträgt, dass die Nervenzellen wieder zusammenwachsen. Manche Wissenschaftler träumen auch schon von einem Ersatz der heute verwendeten Kunststoff-Fasern durch Spinnenseide, um vom immer teurer werdenden Öl unabhängig zu werden.

Eine industrielle Produktion von Spinnenseide-Fäden scheiterte bisher vor allem daran, dass der Kannibalismus der Tiere eine Spinnenzucht in großem Maßstab unmöglich macht. Die Fäden bestehen jeweils aus einer spezifischen Mischung unterschiedlicher Proteinbausteine, die in einem Kanal zusammengeführt werden.

Anzeige
Spinnenseiden-Faden aus dem Labor der TU München: Eines der beiden für die Fadenbildung benötigten Proteine wurde mit einem Fluoreszenzfarbstoff markiert. © Sebastian Rammensee

Chemie muss stimmen

Spinnen stellen je nach Einsatzzweck verschiedene Arten von Seide her. Den entstehenden Faden zieht die Spinne mit ihren Beinen heraus und sorgt damit für die nötige Strömung in dem Kanal. Damit die Proteine sich zu einem stabilen Faden verbinden, muss allerdings auch die Chemie stimmen. Denn die Eiweißketten sind zunächst gelöst und nehmen eine zufällige Struktur im Raum ein. Zellen der Spinndrüse fügen Kaliumphosphat und Säure zu, bis die so genannten Beta-Faltblattstrukturen entstehen. In diesen sind benachbarte Moleküle durch die gemeinsame Wechselwirkung vieler schwacher Bindungen sehr stark miteinander verbunden, was der Spinnenseide ihre große Stabilität verleiht.

Bisher konnte man den Spinnprozess nur schwer untersuchen, da die mikroskopisch kleinen Vorgänge nicht direkt in der Spinne beobachtbar sind. Gleichzeitig gab es bisher kaum die Möglichkeit an das Rohmaterial, die Proteinbausteine, in genügend großer Menge heran zu kommen. Mittlerweile jedoch ist die Proteinherstellung im Labor mit Hilfe genetisch dafür programmierter Bakterien kein Problem mehr. So konnte Ute Slotta von Universität Bayreuth im Rahmen des Kooperationsprojekts die benötigten Spinnenfaden-Proteine in ausreichender Menge herstellen.

Spinnkanal erfolgreich nachgebaut

Rammensee aus dem Team von Professor Andreas Bausch an der TU München gelang es jetzt im Labor den Spinnkanal nachzubauen und damit die genauen chemischen und physikalischen Bedingungen, unter denen sich im Kanal ein stabiler Seidenfaden bildet, zu bestimmen.

Bild der Reaktionskammer: Von rechts werden die Reagenzien zugeleitet. In der Mitte ist die Verengung zu sehen, die wesentlich zur Fadenbildung beiträgt. © Sebastian Rammensee

Das Herzstück des Experiments ist eine dünne Plexiglas-Platte mit winzigen Kanälen, jeder etwa 100 Mikrometer breit, kaum dicker als ein menschliches Haar. Durch die Kanäle fließen Lösungen mit den Protein-Bausteinen der Spinnenseide und den für den Herstellungsprozess zusätzlich erforderlichen Chemikalien. Dank dieser „Mikrofluidik“ genannten Technik lassen sich Strömungs-Experimente mit sehr geringen Flüssigkeitsmengen auf kleinstem Raum durchführen und die Bedingungen nachempfinden, die im Spinnkanal herrschen.

Die Münchner Forscher haben für ihre Untersuchungen viele Varianten der Mischung von Seiden-Proteinen und des Strömungsverlaufs ausprobiert. Dabei untersuchten sie zwei Arten von Seiden-Proteinen, die auch bei natürlichen Spinnenfäden in einer Mischung auftreten: eADF3 und eADF4 – eADF steht hierbei für „engineered Araneus Diadematus Fibroin“ (das Protein der Gartenspinne).

Destabilisierte Proteinlösung

Das wichtigste Ergebnis des Experiments: Ein stabiler Faden entsteht nur, wenn die Proteinlösung genau dann destabilisiert wird, wenn ein so genannter Elongationsfluss herrscht: Durch eine Verengung im Kanal wird der Fluss beschleunigt. Diese Veränderung im Fluss sorgt dafür, dass die bis dahin kugelförmigen Spinnenseidenaggregate miteinander wechselwirken und zu einem Faden gezogen werden.

Bemerkenswert ist, dass unbedingt eADF3-Proteine benötigt werden, um einen Faden entstehen zu lassen. In einer Lösung, die ausschließlich eADF4-Proteine enthält, verbinden sich diese nicht zu einem stabilen Seidenfaden, sondern bleiben in Kugelform. Umgekehrt reichen eADF3-Proteine alleine aus, um die für stabile Fäden erforderliche Beta-Faltblattstruktur zu bilden. Die Messungen lassen aber darauf schließen, dass die eADF4-Beimischung für eine längere Lebensdauer der Fäden sorgt.

Bausch kommentiert die Ergebnisse: „Wir haben hier versucht, die Natur so gut wie möglich nachzubauen und zu verstehen. Damit sind wir auf dem Weg zu künstlich hergestellten Biomaterialien einen entscheidenden Schritt weiter gekommen.“

(idw – Technische Universität München, 30.04.2008 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

NAchglühen von GRB 221009A

Rekord-Ausbruch überrascht Astronomen

Neue fossile Riesenschlange entdeckt

Warum Chinas Großstädte absinken

Landschaft unter dem Thwaites-Gletscher kartiert

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Bionik - Das Genie der Natur von Alfred Vendl und Steve Nicholls

Welt der Elemente - von Hans-Jürgen Quadbeck- Seeger

Donnerwetter - Physik - von Peter Häußler

Erfindungen der Natur - - Bionik von Zdenek Cerman, Wilhelm Barthlott und Jürgen Nieder

Bionik - Neue Technologien nach dem Vorbild der Natur von Werner Nachtigall und Kurt Blüchel

Top-Clicks der Woche