Anzeige
Technik

Magnetspeicher jetzt auch elektrisch

Erster Nachweis einer direkten elektrischen Schaltung magnetischer Information

Digitale Informationen beispielsweise auf der Festplatte eines Computers werden normalerweise mittels magnetischer Felder geschrieben. Doch jetzt haben Wissenschaftler erstmals nachgewiesen, dass magnetische Signale in Datenspeichern auch direkt mittels elektrischer Felder geschaltet werden können. Dieser Nachweis eröffnet neue Perspektiven für zukünftige Speichermedien der Informationstechnik.

{1l}

Millionenfach dienen magnetische Muster auf Computerfestplatten zur Speicherung von Daten. Die magnetischen Informationscodes werden durch externe Magnetfelder geschrieben, die bei Festplatten in schneller Folge von sehr leistungsfähig miniaturisierten Schreib-Leseköpfen erzeugt werden. In der fortschreitenden Miniaturisierung der polbaren Bereiche zur Erhöhung der Speicherkapazität stößt man damit jedoch mehr und mehr an physikalische Grenzen. Die Kontrolle der magnetischen Eigenschaften, und damit der gespeicherten Information, durch andere Effekte als Magnetfelder ist daher eines der wichtigsten Ziele der modernen Informationstechnologie.

Dass es auch möglich ist, nachweisbare und bleibende magnetische Spuren in speziellen Kristallen durch reine Stromsignale zu erzeugen, konnte jetzt erstmals von Wissenschaftlern der Universität Tübingen und der Berliner Forschungszentren Max-Born-Institut und Hahn-Meitner-Institut nachgewiesen werden. Durch die neuen Erkenntnisse eröffnen sich neue Ansätze für die Datenspeicherung durch magnetoelektrische Effekte.

Magnetismus gezielt geschaltet

In der Wissenschaftszeitschrift Nature berichten Wissenschaftler des Berliner Hahn-Meitner-Instituts, des Max-Born-Instituts für Nichtlineare Optik (MBI) in Berlin, der Universität Tübingen sowie des französischen Instituts Laue-Langevin, dass in bestimmten Kristallen (so genannten „Multiferroika“) die magnetische Ordnung auch mittels elektrischer Felder geschaltet werden kann. Dabei wird nicht nur die magnetische Polung durch das elektrische Feld kontrolliert, sondern es ist zudem möglich, den Magnetismus als solchen gezielt an- oder abzuschalten. „Für unser Experiment benutzten wir ein magnetisch weitgehend ungeordnetes Material“, berichtet Manfred Fiebig vom MBI. Es handelt sich um eine kristalline Verbindung der Metalle Holmium und Mangan (HoMnO3) Erst das Anlegen einen elektrischen Feldes machte daraus eine ferromagnetische Substanz, die als Informationsspeicher dienen könnte.

Anzeige

Optische Messungen…

Die Forscher wiesen dies auf zweierlei Weise nach. Zum einen haben die Forscher in der keramischen Verbindung Holmiummanganit ein System gefunden, dessen magnetische Phase durch ein externes elektrisches Feld kontrolliert werden kann. Das elektrische Feld schaltet die ferromagnetische Ordnung in diesen Kristallen an und ab. Den Einfluss eines elektrischen Feldes auf die magnetische Ordnung haben die Forscher in optischen Messungen nachgewiesen, indem sie die so genannte optische zweite Harmonische, eine Verdopplung der Frequenz einer Lichtwelle im Kristall, untersucht haben. Zudem haben sie bei Anlegen eines elektrischen Feldes eine für einsetzende ferromagnetische Ordnung typische Änderung der Schwingungsrichtung des Lichts beobachtet.

…und verschobene Atome

Zum anderen gelang es, auf atomarer Skala in den Kristall hineinzublicken und die mit der Änderung der magnetischen Ordnung einhergehende Verschiebung der Atome nachzuweisen. Von außen sieht es so aus, als ob die Anordnung der Atome eines Kristalls in einem Gitter fest wäre. Die mikroskopische Analyse der Atompositionen weist jedoch häufig Änderungen der Atompositionen auf, zum Beispiel in Abhängigkeit von der Temperatur oder angelegten magnetischen oder elektrischen Feldern, welche zu Änderungen der Materialeigenschaften führen.

In dieser Arbeit konnten die Wissenschaftler feldabhängige Verschiebungen der Atompositionen im Kristallgitter, dadurch Änderungen der magnetischen Austauschpfade nachweisen und mit diesen das Schalten der magnetischen Ordnung erklären. Mit den Ergebnissen eröffnen sich Möglichkeiten zur Konstruktion neuartiger und effektiverer magnetischer Informationsspeicher. Die Wissenschaftler können nun Grundanforderungen an Materialien ableiten, die für eine magnetoelektrische Phasenkontrolle genutzt werden könnten.

Mehr Datenstabilität

Bereits vor zwei Jahren hatten die Forscher des Max-Born-Instituts in Nature über die mögliche Kopplung zwischen magnetischen und elektrischen Ordnungszuständen berichtet. Mit dem jetzt in Nature dargestellten Experiment vollführen sie den wichtigen Schritt zum kontrollierten magneto-elektrischen Schalten, mit dem ein neuartiger Schreib- und Leseprozess erst möglich wird. „Wir sehen als mögliche Anwendung nicht unbedingt kleinere Festplatten“, erläutert Mafred Fiebig, „sondern eher eine erhöhte Stabilität der gespeicherten Daten“.

Zukünftige Untersuchungen werden sich mit der Übertragung der gefundenen Ergebnisse auf dünne Materialfilme widmen, wie sie für technologische Anwendungen relevant sind. Des weiteren soll die zeitliche Ablauf des magneto-elektrischen Schaltprozesses mit den am MBI vorhandenen Kurzpulslasern untersucht werden.

(Forschungsverbund Berlin, 30.07.2004 – NPO)

Teilen:
Anzeige

In den Schlagzeilen

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Umweltgifte - Neue Gefahr für die Gesundheit des Menschen?

News des Tages

Feldhase

Genom des "Osterhasen" entschlüsselt

Erstes Bild der Magnetfelder ums Schwarze Loch

Ägypten: Wandbilder aus der Totenstadt

Wie das Klima den antarktischen Zirkumpolarstrom beeinflusst

Bücher zum Thema

Menschmaschinen - Wie uns die Zukunftstechnologien neu erschaffen von Rodney Brooks

Top-Clicks der Woche