Lernfähiges Computersystem entwickelt und plant Synthesewege für organische Moleküle KI als Chemiker - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Lernfähiges Computersystem entwickelt und plant Synthesewege für organische Moleküle

KI als Chemiker

Heruszufinden, wie sich ein komplexes organisches Molekül herstellen lässt, ist eine echte HErausforderung. Jetzt hat sie erstmals eine künstliche Intelligenz gemeistert. © Garsya/ iStock

Kollege Computer: Forscher haben eine künstliche Intelligenz entwickelt, die den Job eines Chemikers übernimmt. Sie entwickelt geeignete und machbare Synthesewege für organische Moleküle – eine extrem komplexe, zeitaufwändige Aufgabe. Doch das aus drei neuronalen Netzen bestehende KI-System schafft dies bereits so gut, dass seine Synthesewege in Tests sogar besser bewertet wurden als die menschlicher Chemiker, wie die Forscher im Fachmagazin „Nature“ berichten.

Künstliche Intelligenz wird heute immer häufiger eingesetzt. Sie hilft schon bei der Diagnose von Brustkrebs und anderen Tumoren, erkennt Fake-News und gefälschte Bilder im Netz oder Risse im Atomkraftwerk. Sogar in der Justiz bekommen die Prognosen der KI zunehmenden Einfluss.

Eine Domäne war bisher allerdings weitgehend dem Menschen vorbehalten: das Entwickeln und Planen wissenschaftlicher Experimente und Studien. Doch inzwischen bröckelt auch diese Bastion menschlichen Forschergeistes. Erst vor Kurzem haben Wissenschaftler einen Algorithmus entwickelt, der quantenphysikalische Experimente ersinnen und ausprobieren kann.

Komplexe Fahndung

Jetzt legen Martin Segler von der Universität Münster und seine Kollegen nach – mit einer künstlichen Intelligenz als Chemiker. Dieses KI-System kann Synthesewege für organische Moleküle entwickeln. Diese Aufgabe ist hochkomplex und normalerweise extrem zeitaufwändig. Denn dafür müssen die meist mehrschrittigen chemischen Reaktionswege zunächst ausgehend vom gewünschten Endprodukt rekonstruiert werden.

Das Problem: Meist gibt es mehrere Reaktionswege, die zu einem Endprodukt führen, aber nicht alle sind technisch machbar oder sinnvoll. Zudem muss bei jedem Schritt überprüft werden, ob die korrekten Bindungen zwischen den Atomen entstehen und unter welchen Bedingungen. „Bei jedem Schritt dieser Retrosynthese müssen die passenden Reaktionen aus hunderttausenden von möglichen Umwandlungen gefunden werden“, erklären Segler und seine Kollegen. Und schließlich müssen die für alle Schritte nötigen Chemikalien verfügbar und im Idealfall auch noch günstig sein.

Anzeige

Teamwork von drei neuronalen Netzen

Ein KI-System, dass diese komplexe Aufgabe meistern kann, haben nun Segler und seine Kollegen entwickelt. Es besteht aus einem Suchmodul und drei gekoppelten neuronalen Netzen. Der Clou dabei: Die lernfähigen Algorithmen lernten durch die Auswertung von Millionen chemischen Reaktionen selbstständig, welche Syntheseschritte möglich sind und welche Regeln dabei gelten.

Die eigentliche Syntheseplanung findet dann in Arbeitsteilung statt: Das Suchmodul durchforstet die Datenbanken, in denen chemische Reaktionen und bereits bekannte Synthesewege gespeichert sind. Das erste neuronale Netz schränkt die Suchergebnisse auf Basis der gelernten Regeln ein. Das zweite Netzwerk prüft, ob die vorgeschlagenen Reaktionen technisch machbar sind. Das dritte Netz sucht nach dem jeweils auf Basis des vorhandenen Zwischenprodukts sinnvollen nächsten Reaktionsschritt.

Besser als menschliche Chemiker

Wie gut die künstliche Intelligenz diese Aufgabe löst, haben die Forscher bereits getestet: 45 ausgebildete Chemiker bekamen dabei für neun Endprodukte jeweils zwei Synthesewege vorgelegt – einer stammte von der KI, der andere von einem erfahrenen Chemiker. Sie sollten nun bewerten, welcher Weg ihrer Ansicht nach der bessere ist – ohne zu wissen, von wem diese Vorschläge stammten.

„Man würde erwarten, dass die Chemiker die von der Maschine vorgeschlagenen Synthesewege klar als minderwertiger identifizieren“, so Segler und seine Kollegen. „Doch überraschenderweise ist dies nicht der Fall.“ Stattdessen gaben die Experten sogar den KI-Lösungen häufiger den Vorzug. In 57 Prozent der Fälle entschieden sie sich für die KI-Lösung, in 43 für die von Menschen entwickelte.

KI als chemische Assistenten

„Damit haben wir gezeigt, dass eine Monte-Carlo-Suche kombiniert mit tiefen neuronalen Netzwerken und Regeln eine effektive Syntheseplanung durchführen kann“, konstatieren die Forscher. „Zudem kann unser System mehr Aufgaben lösen und ist schneller als etablierte Suchmethoden.“ Ihrer Ansicht nach könnten solche elektronischen Assistenten daher künftig häufiger Chemiker bei ihren Aufgaben unterstützen.

Allerdings: Komplett ersetzen kann die künstliche Intelligenz die menschlichen Chemiker deswegen noch nicht. Denn wie die Forscher einräumen, ist die KI bisher unter anderem mit der Retrosynthese von Naturstoffen noch überfordert. „Solche Naturprodukte sind jedoch auch für die besten menschlichen Chemiker eine echte Herausforderung“, so Segler und seine Kollegen. (Nature, 2018; doi: 10.1038/nature25978)

(Nature, 29.03.2018 – NPO)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Alchemie - Forscher entschlüsseln die geheimen Rezepte der Alchemisten

News des Tages

Bücher zum Thema

Unendliche Weiten - Kreuz und quer durchs Chemie-Universum - von Thisbe K. Lindhorst, Hans-Jürgen Quadbeck-Seeger und der Gesellschaft Deutscher Chemiker

Chemie erleben - von Edgar Wawra, Helmut Dolznig und Ernst Müllner

Top-Clicks der Woche

Anzeige
Anzeige