Erste Messung der Lebensdauer angeregter Elektronen in Quantenpunkten Gefangene Elektronen leben länger - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Erste Messung der Lebensdauer angeregter Elektronen in Quantenpunkten

Gefangene Elektronen leben länger

Schema eines Quantenpunkts mit einer Benetzungsschicht (InAs/GaAs) © Alexander Kleinsorge/GFDL

Sind Elektronen in winzigen Strukturen – den Quantenpunkten – im Nanometer-Bereich eingeschlossen, so zeigen sie einmalige Eigenschaften, die für neuartige Computer oder Halbleiter-Laser genutzt werden könnten. So könen sie kaum Energie an ihre Umgebung abgegeben und bleiben deutlich länger im angeregten Zustand, wie Forscher jetzt herausfanden. Die Ergebnisse der ersten Messungen der Lebenszeit von angeregten Elektronen sind jetzt in der Fachzeitschrift „Nature Materials“ erschienen.

Ob optische Datenspeicherung auf CDs und DVDs oder die Glasfaser-Technologie für das Internet: Viele dieser Anwendungen basieren darauf, dass Elektronen, die durch Anregung in einen höheren energetischen Zustand versetzt werden, möglichst lange dort verharren und nur langsam in ihren Ursprungszustand zurückkehren. Für verbesserte Halbleiter-Laser, aber auch für zukünftige Technologien wie etwa die Quanteninformationsverarbeitung, streben Forscher daher eine möglichst lange Lebensdauer von angeregten Elektronen an.

Quantenpunkte als Nano-Pyramiden

Einen Ansatz dafür bilden so genannte Quantenpunkte. Grundlage dieser vor rund 20 Jahren erstmals hergestellten Konfiguration sind Halbleiter-Substrate beispielsweise aus Galliumarsenid. Die darauf wachsenden Quantenpunkte sehen aus wie winzige Pyramiden und bestehen typischerweise aus 1.000 bis etwa 10.000 Atomen. Die Ausdehnung dieser Nano-Pyramiden ist so gering, dass die Elektronen quantenmechanischen Regeln gehorchen und nicht mehr frei beweglich sind. So können die Elektronen in Quantenpunkten nur bestimmte Energieniveaus einnehmen. Die Elektronen treffen zudem in allen drei Richtungen auf Begrenzungen und verhalten sich deshalb wie eine Art künstliches Atom.

Rätsel des „Phonon-Flaschenhalses“

Normalerweise verlieren Elektronen in einem Gitter Energie durch Wechselwirkungen mit den Schwingungen im Kristallgitter, den so genannten Phononen. Doch weil die Elektronen in dem dreidimensionalen Gefängnis des Quantenpunkts stark begrenzt sind, ist diese Energieabgabe nicht möglich. Die Elektronen sitzen in einem „Phonon-Flaschenhals“. Als Folge der geringen Energieabgabe müsste sich – so die Theorie – die Dauer der angeregten Phase bei diesen Elektronen verlängern.

Jetzt haben Wissenschaftler von der Universität von Sheffield in Großbritannien, der Ecole Normale Supérieure in Paris und vom Forschungszentrum Dresden-Rossendorf diese Theorie überprüft, indem sie Quantenpunkte einem Test über einen breiten Parameterbereich unterzogen.

Anzeige

Transmissions -Elektronenmikroskop (TEM)-Aufnahme eines Quantenpunkts auf einem Galliumarsenid-Substrat. Das Kristallgitter ist deutlich zu erkennen. Die helle Schicht (Kleber) oben resultiert von der TEM Probenpräparation. © Universität Sheffield

Lebensdauer verlängert

Das Forscherteam stellte dafür Quantenpunkte her, deren Energieniveaus signifikant niedriger waren als die Energie der Hauptschwingungen im Kristallgitter. Um die Lebenszeiten der angeregten Elektronen besonders akkurat messen zu können, nutzten die Wissenschaftler einen besonderen Typ eines sehr kurz gepulsten Terahertz-Lasers, den so genannten Freie-Elektronen-Laser am Forschungszentrum Dresden-Rossendorf (FZD). Dieser spezielle Laser erzeugt besonders intensive Lichtpulse und überstreicht einen weiten Wellenlängen-Bereich der Infrarot- und Terahertz-Strahlung.

Die Forscher beobachteten eine tausendfache Verlängerung der Lebensdauer, wenn der Energieabstand nur halbiert wurde. Sie stieg von mehreren Pikosekunden – einem Millionstel einer Millionstel Sekunde) – in den Bereich von Nanosekunden und verlängerte sich somit um drei Größenordnungen.

Diese langen Lebenszeiten könnten eine Reihe neuer Anwendungen bedeuten, besonders für Terahertz-Laser auf Basis von Quantenpunkten. Der Grund: der Abstand der Energieniveaus liegt im Bereich von 10 bis 20 Millielektronenvolt (meV), was auch anders ausgedrückt werden kann als eine Frequenz von wenigen Terahertz.

(Forschungszentrum Dresden-Rossendorf (FZD), 18.08.2009 – NPO)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Nanoröhrchen - Kohlenstoffwinzlinge als Bausteine für Computer der Zukunft

News des Tages

Weißer Zwerg

Beringter Weißer Zwerg gibt Rätsel auf

Optische Täuschung durch Verzögerungs-Effekt

Sport verschiebt die innere Uhr

Wie klimafreundlich ist Laborfleisch?

Alaska: Mini-Beutler lebte zwischen Dinosauriern

Bücher zum Thema

Sie irren, Einstein! - Newton, Einstein, Heisenberg und Feynman diskutieren die Quantenphysik von Harald Fritzsch

Einsteins Spuk - Teleportation und weitere Mysterien der Quantenphysik von Anton Zeilinger

Skurrile Quantenwelt - von Silvia Arroyo Camejo

Top-Clicks der Woche

Anzeige
Anzeige