Plasmagenerator PSI-2 erzeugt erstes Plasma Fusionsforschung nimmt Fahrt auf - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Plasmagenerator PSI-2 erzeugt erstes Plasma

Fusionsforschung nimmt Fahrt auf

Fusionsreaktor Sonne © SOHO (ESA/NASA)

Gestern hat in Jülich der Plasmagenerator PSI-2 seinen Betrieb aufgenommen. Das drei Tonnen schwere und eine Million Euro teure Gerät wird helfen, Materialien zu finden, die ab dem Jahr 2035 als Wandelemente den Dauerbetrieb in einem Fusionskraftwerk aushalten können. Dazu müssen diese rund um die Uhr der enormen Wärmebelastung durch die 100 Millionen Grad heiße Fusionsmaterie im Inneren der Brennkammer und dem Beschuss mit Neutronen standhalten.

„Wir haben unser Experiment PSI-2 während des letzten Dreivierteljahres aufgebaut und jetzt das erste Plasma erzeugt“, sagte Professor Bernhard Unterberg vom Jülicher Institut für Energie- und Klimaforschung. Er und sein Team untersuchen die Wechselwirkung des heißen Plasmagases mit den umgebenden Oberflächen – auf englisch plasma-surface interaction – oder kurz PSI. Nur bei Plasmatemperaturen von etwa 100 Millionen Grad verschmelzen die Atomkerne optimal und setzen Energie frei. Nach dem gleichen Prinzip erzeugt auch unsere Sonne ihre Energie.

Schützendes Magnetfeld

Für die Wände eines Fusionskraftwerks wären diese hohen Brenntemperaturen eigentlich kein Problem. Denn ein eigens dafür ausgelegter Magnetfeldkäfig ist in der Lage, den ungewollten Kontakt des Plasmas mit der gesamten Innenwand zu verhindern. Doch in Fusionskraftwerken ist ein kontrollierter Kontakt des Plasmas mit der Kammerwand gewollt und sogar notwendig.

„Die Heliumkerne, die bei der Fusion der Wasserstoffisotope Deuterium und Tritium entstehen, wirken auf den Fortgang der Fusion wie das Verbrennungsprodukt Kohlendioxid auf eine Kerze im abgedeckten Glas: Wenn wir das Helium nicht rasch genug entfernen, erstickt die Fusion“, erklärt Ralph Schorn vom Jülicher Institut für Energie- und Klimaforschung. Deshalb wird das schützende Magnetfeld an bestimmten Stellen – den so genannten Divertoren – kontrolliert geöffnet und das Helium abgepumpt. Diese Stellen der Wand sind kontinuierlich einem hohen Wärme- und Teilchenfluss ausgesetzt, der Material aus der Wand herausschlägt.

„Dieses kann in das Plasma gelangen und schlimmstenfalls die Fusion beenden. Außerdem wird die Wand dünner, was natürlich ihre Lebensdauer begrenzt und damit auch in die Wirtschaftlichkeit späterer Kraftwerke eingeht“, sagt Unterberg.

Anzeige

ITER: Kein Dauerbetrieb geplant

Trotz ausführlicher Untersuchungen der Wandschädigung an der Jülicher Experimentalplattform TEXTOR gibt es bisher keine Daten über das Verhalten der Wand im Fusionsdauerbetrieb unter den realen Bedingungen von Kraftwerken. Zwar nimmt das internationale Fusionsexperiment ITER im Jahre 2019 seinen Betrieb auf. Doch anders als später in „richtigen“ Kernfusionskraftwerken wird es in ITER keinen Dauerbetrieb geben. Die Kernfusion wird jeweils nur für einige Minuten gezündet.

Folgen des Dauerbetriebs werden untersucht

Deshalb beginnt das Forschungszentrum Jülich nun mit der Untersuchung der Auswirkungen, die der Dauerbetrieb auf die Wände der Fusionskraftwerke ab dem Jahre 2035 haben wird. „Dass wir schon jetzt damit anfangen, ist zwingend notwendig, um die Erkenntnisse rechtzeitig vorliegen zu haben“, sagt Unterberg. „Denn für viele Entwicklungen benötigen wir eine lange Vorlaufzeit.“

Im jetzt begonnenen Pilotexperiment PSI-2 wird Plasma auf eine Probe des Wandmaterials „geschossen“. Mit Hilfe von Laserlicht analysieren die Forscher dann, welche Materialien in das Plasma gelangen und die Fusion zu behindern drohen. Anders als bei den auf die Energieerzeugung zielenden Reaktorkonzepten, in denen die Kernfusion nur aufrechterhalten werden kann, wenn das Plasma von Magnetfeldern auf eine Ringbahn gezwungen wird, bewegt sich das Plasma im PSI-2 im Wesentlichen nur geradeaus, was die Analyse vereinfacht. Kernfusion findet hier nicht statt.

Neutronen verändern Materialeigenschaften

Die nächste Projektphase JULE-PSI ab dem Jahre 2015 planen die Forscher schon jetzt, denn es fehlt noch ein sehr wichtiger Aspekt: Die Wand im Fusionskraftwerk wird fortwährend mit Neutronen bestrahlt. Diese Neutronen entstehen bei der Kernfusion und tragen 80 Prozent der erzeugten Energie aus dem Plasma hinaus.

„In den Wänden und in speziellen Materialien außerhalb der Brennkammer werden die Neutronen abgebremst und erwärmen dadurch das Material. Über einen Kühlkreislauf kann man die Wärme dann zur Dampferzeugung nutzen und eine Turbine zur Stromerzeugung antreiben“, erklärt Unterberg. Der springende Punkt ist, so der Forscher: „Die Neutronen verändern die Materialeigenschaften der Wand, etwa die Struktur des Kristallgitters.“

Nachfolgeexperiment JULE-PSI

Mit dem Nachfolgeexperiment JULE-PSI werden die Jülicher Forscher erstmals vorweg mit Neutronen bestrahlte Wandproben im Plasmadauerbetrieb untersuchen, um Erkenntnisse darüber zu gewinnen, welchen Einfluss die Neutronenbestrahlung auf die Wandeigenschaften hat. Das Pilotexperiment PSI-2 dient auch dazu, die späteren Abläufe bei JULE-PSI zu erproben und geeignete Standards zu entwickeln. Da das Wandmaterial durch den Neutronenbeschuss unter anderem auch radioaktiv wird, muss es in Speziallabors untersucht werden, wie es sie nur an wenigen Forschungsstätten weltweit gibt.

Daten und Fakten zu PSI-2

  • Elektrische Anschlussleistung: 350 Kilowatt
  • Plasmatemperatur: bis zu 200.000 Grad
  • Länge: sieben Meter
  • Gewicht: rund 3,3 Tonnen
  • Kosten: eine Millionen Euro für den Aufbau
  • Technisches Personal: zehn Mitarbeiter
  • Wärmeleistung des Plasmas auf die Wand: ein Megawatt pro Quadratmeter
  • Plasmateilchenstrom: 100 Trilliarden Teilchen pro Quadratmeter und Sekunde
  • Neutralgasdruck: etwa ein Zehnmillionstel des Atmosphärendrucks

(Forschungszentrum Jülich, 16.02.2011 – DLO)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Kernfusion - Teure Utopie oder Energie der Zukunft?

News des Tages

Trauben in der MIkrowelle

Rätsel der funkensprühenden Weintrauben gelöst

Klimawandel: Mehr sommerliche Gewitterstürme

Hunderttausende neuer Galaxien entdeckt

Tuberkulose in den Selbstmord treiben

Waren Neandertaler doch "Fleischfresser"?

Bücher zum Thema

Erneuerbare Energien - Mit neuer Energie in die Zukunft von Sven Geitmann

Sonnige Aussichten - Wie Klimaschutz zum Gewinn für alle wird von Franz Alt

Was sind die Energien des 21. Jahrhunderts? - Der Wettlauf um die Lagerstätten von Hermann-Josef Wagner

Wissen hoch 12 - Ergebnisse und Trends in Forschung und Technik von Harald Frater, Nadja Podbregar und Dieter Lohmann

Fair Future - Ein Report des Wuppertal Instituts

Top-Clicks der Woche

Anzeige
Anzeige