Neuer Terahertz-Beschleuniger für Elektronen ist nur wenige Zentimeter groß Elektronenkanone in der Streichholzschachtel - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Neuer Terahertz-Beschleuniger für Elektronen ist nur wenige Zentimeter groß

Elektronenkanone in der Streichholzschachtel

Das Funktionsprinzip der Miniatur-Elektronenquelle (rechts unten) auf Terahertz-Basis: Ein ultravioletter Blitz (blau) beleuchtet die Photokathode der Quelle von der Rückseite, wodurch eine kompakte Elektronenwolke auf der Innenseite des Geräts freigesetzt wird. Die Wolke wird unmittelbar von einem extrem intensiven Terahertz-Puls (rot) auf Energien nahe dem Kilo-Elektronenvolt-Bereich beschleunigt. Die Elektronen (gelb) können beispielsweise für Elektronendiffraktionsexperimente oder für Teilchenbschleuniger einer künftigen Generation von Röntgenlasern genutzt werden. © W. Ronny Huang, CFEL/DESY/MIT

Beschleuniger geschrumpft: Forscher haben einen Teilchenbeschleuniger für Elektronen entwickelt, der nur noch so groß ist wie eine Streichholzschachtel. Mit Hilfe von Terahertzstrahlung produziert diese Miniquelle kurze und stark gebündelte Elektronenstrahlen. Sie können zur Analyse kleinster Strukturen und Prozesse eingesetzt werden, von Bioreaktionen bis hin zu Supraleitern.

Elektronen gehören nicht nur zu den Grundbausteinen der Materie und fließen allgegenwärtig als elektrischer Strom. Sie sind auch ein wichtiges Werkzeug für die Wissenschaft. Denn mit Hilfe hochkonzentrierter und beschleunigter Elektronenstrahlen können Forscher chemische Reaktionen filmen, Strukturen von Kristallen sichtbar machen und die ultrakurzen Laserpulse von Röntgenlasern produzieren.

Von Kilometern auf wenige Zentimeter

Bisher allerdings sind solche Elektronenkanonen meist so groß wie ein Auto – mindestens. Denn um die Elektronen auf das gewünschte Tempo zu bringen, werden sie durch elektromagnetische Hochfrequenzfelder im Radiowellenbereich nach und nach beschleunigt – und das benötigt eine gewisse Flugstrecke. Beim europäischen Röntgenlaser XFEL sind es beispielsweise drei Kilometer.

Bereits im letzten Jahr jedoch ist es Emilio Nanni vom Massachusetts Institute of Technology (MIT) gemeinsam mit Kollegen vom deutschen Elektronensynchrotron (DESY) gelungen, eine solche Elektronenkanone extrem zu schrumpfen. Das Beschleunigermodul ihres Prototyps war ein nur rund 1,5 Zentimeter langes Röhrchen.

Terahertz-Strahlen als Beschleuniger

Der Clou dabei: Um die Elektronen im Gerät zu beschleunigen, nutzten die Forscher Terahertz-Strahlung. Deren Wellenlängen liegen zwischen denen von Infrarotlicht und Mikrowellen und sind damit rund tausendmal kürzer als die Radiowellen der bisherigen Synchrotrone. Dadurch lässt sich erheblich mehr „Schub“ auf kürzerer Strecke erreichen.

Anzeige

Schon der leistungsschwächere Prototyp nutzte einen ähnlichen, 1,5 Zentimeter langen mikrostrukturierten Beschleunigerkanal. © DESY/ Heiner Müller-Elsner

„Darüber hinaus können die verwendeten Terahertz-Wellenleiter viel höhere Feldstärken vertragen als bei Hochfrequenz-Wellenlängen, wodurch die Elektronen einen viel stärkeren Anschub bekommen“, erklärt Ronny Huang vom MIT. „So entstehen deutlich intensivere und kürzere Elektronenstrahlen.“ Er und seine Kollegen haben den noch wenig leistungsfähigen Prototyp nun zu einer echten Elektronenkanone ausgebaut.

Raffinierte Manipulation

Die neue Elektronenquelle im Mini-Format ist etwas kleiner als eine Standard-Streichholzschachtel, hat es aber in sich. Aus einem hauchdünnen Kupferfilm schlägt UV-Licht Elektronen heraus, die in den mikrostrukturierten Beschleunigungskanal gelangen. Dort wird Terahertz-Laserstrahlung eingespeist, die die Elektronen mitreißt und beschleunigt.

Der Schlüssel zur Beschleunigung ist dabei die Struktur des Kanals, der die Terahertzstrahlung durch eine nur 75 Mikrometer kleine Lücke zwingt – das ist weniger als die Wellenlänge der Strahlung. „Das ist etwas Besonderes“, erklärt Huang. „Denn in der Optik kann man Strahlung normalerweise nicht unter ihre eigene Wellenlänge bringen – aber dank unserer Mikrostruktur können wir es.“ Wie eine Art Düseneffekt sorgt dieses Prinzip für eine Erhöhung der Energiedichte – und verstärkt so die Beschleunigung.

500 Elektronenvolt aus einer Streichholzschachtel

Die Leistung ist dabei beachtlich: Die Mini-Quelle erreicht einen Beschleunigungsgradienten von 350 Megavolt pro Meter. „Das Beschleunigungsfeld ist damit fast doppelt so stark wie bei den modernsten konventionellen Quellen“, sagt Huang. Das Gerät kann damit Pakete von je 250.000 Elektronen von Null auf 500 Elektronenvolt bringen – und das gleichmäßig und auf einer Strecke von wenigen Zentimetern.

Die Beschleunigung von Elektronen in einem herkömmlichen Synchrotron erfordert sehr viel größere Module. Abgebildet ist ein Resonator des Europäischen Freie Elektronen Lasers XFEL. © DESY

„Mit diesen Eigenschaften könnten die Elektronenstrahlen aus unserer Quelle bereits direkt für Untersuchungen mit Hilfe der niederenergetischen Elektronendiffraktion verwendet werden“, erklärt Huang.

Vom Nanofilm zum Mini-Röntgenlaser

Anwendungen für die neuen Miniatur-Elektronenkanonen gibt es viele: „Mit kleineren und besseren Elektronenquellen können etwa Biologen bessere Einblicke in die Funktion der makromolekularen Maschinerie in der Photosynthese bekommen, und Physiker können zum Beispiel die fundamentalen Wechselwirkungsprozesse in komplexen Festkörpern besser verstehen“, erklärt Franz Kärtner vom DESY.

Am DESY arbeiten die Forscher bereits an der nächsten Generation der kleinen Terahertz-Elektronenquellen. Sie sollen dann ultrakurze und ultrahelle Elektronenstrahlen mit noch höheren, sogenannten relativistischen Energien und nur zehn Femtosekunden Dauer produzieren können. Solche ultrakurzen Elektronenstrahlen können beispielsweise genutzt werden, um Phasenübergänge in Metallen, Halbleitern und Molekülkristallen mittels ultraschneller Elektronendiffraktion zu beobachten.

Künftige Mini-Beschleuniger sollen aber auch als Strahlenquellen für neue Röntgenlaser dienen. Dabei werden die hochbeschleunigten Elektronen auf einen Slalomkurs geschickt, durch den sie in den Kurven jeweils Energie in Form von Lichtblitzen abgeben. Diese Photonen wiederum füttern dann kompakte Attosekunden-Röntgenlaser. Mit Hilfe solcher Laser hoffen Forscher, ultraschnelle Prozesse in der Natur zu entschlüsseln, etwa die Dynamik der Lichtabsorption und des Elektronentransports in der Photosynthese. (Optica, 2016; doi: 10.1364/OPTICA.3.001209)

(Deutsches Elektronen-Synchrotron DESY, 23.11.2016 – NPO)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Laser - Die Kraft des Lichts und ihre Nutzung

News des Tages

E coli

Bakterium mit größtem künstlichen Genom

Ältester Beleg für Stärkekonsum entdeckt

Industrieabfälle machen Zement "grüner"

Bücher zum Thema

Quarks, Atome, Moleküle - Auf der Jagd nach den kleinsten Bausteinen der Welt von Gerhard Staguhn

Physik ohne Ende - Eine geführte Tour von Kopernikus bis Hawking von Jörg Hüfner und Rudolf Löhken

Laser - Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst von Dieter Bäuerle

Top-Clicks der Woche

Anzeige
Anzeige