Anzeige
Physik

Elektrischer Dreh für Datenspeicher

Datendichte in Arbeitsspeichern könnte stark erhöht werden

Domänen in einem ferroelektrischen Datenspeicher: In der Aufnahme des aberrationskorrigierten Transmissionselektronen-Mikroskops sind die Positionen sowohl des positiv geladenen Titan und Zirkonium-Atome als auch des negativ geladenen Sauerstoffs in einer quergeschnittenen Probe des Ferroelektrikums PZT zu erkennen. Wie stark die Zirkonium und Titan-Atome von ihren Positionen im unpolarisierten PZT verrückt sind (gelbe Pfeile in der rechten Abbildung), gibt Aufschluss über die Orientierung der Dipolmomente. Die gelb gepunktete Linie markiert die Grenze zwischen den beiden Bereichen mit um 180 Grad gedrehter Polarisierung. Erstmal direkt beobachtet wurde die blau abgegrenzte Domäne, in der sich die Dipolorientierung ringförmig schließt. Die rote durchbrochene Linie zeigt, wo die Unterlage aus Strontium-Ruthenat beginnt. © C.-L. Jia / FZ Jülich / Science

Die Grundlagen für Speichermaterialien der Zukunft schaffen Forscher aus Jülich und Halle. In einem so genannten ferroelektrischen Material haben sie erstmals direkt beobachtet, dass die Dipole, die in diesem Material die Information tragen, kontinuierlich ihre Orientierung ändern und sich daher auch ringförmig anordnen können, berichten die Wissenschaftler nun in „Science“.

Diese Erkenntnis gelang ihnen mit einer besonders kontrastreichen Form der hochauflösenden Transmissionselektronen-Mikroskopie, die die Forscher des Forschungszentrums Jülich entwickelt haben. Ringförmig angeordnete Dipole könnten es erlauben, Arbeitsspeicher deutlich dichter mit Daten zu bepacken als bislang.

Ferroelektrika beseitigen Dilemma der Chip-Industrie

Ferroelektrika können ein Dilemma der Chip-Industrie lösen. Sie speichern Daten dauerhaft und lassen sich dennoch schnell beschreiben und auslesen. Magnetische Materialien dagegen, auf denen Festplatten basieren, fixieren Daten permanent, sind aber träge. Halbleiterspeicher wiederum operieren behände mit Daten, verlieren jedoch schnell ihr Gedächtnis, sodass die elektrischen Ladungen ihrer Kondensatoren ständig aufgefrischt werden müssen.

Ferroelektrika vereinen die Vorteile beider Materialien. Und in ihnen lässt sich Information möglicherweise dichter packen als bislang angenommen. Sie könnten daher zum Material der Wahl für Arbeitsspeicher mit einer Dichte von mehreren Terabit pro Quadratzoll avancieren.

Elementarzelle wird leicht verzerrt

Ferroelektrische Materialien speichern Bits, indem ihre Elementarzellen, ihre kleinsten strukturellen Einheiten, polarisiert werden. Das heißt, ein elektrisches Feld verschiebt die positiv und negativ geladenen Atome leicht gegeneinander, sodass die Elementarzelle leicht verzerrt wird und ein Dipol entsteht. Dieser bleibt so lange erhalten, bis ein umgekehrt gepoltes Feld den Dipol umklappt oder die Polarisierung aufhebt. Jedem Bit ist in einem ferroelektrischen Speicher ein Bereich – Physiker sprechen von einer Domäne – zugeordnet, wo die Dipole alle gleich ausgerichtet sind.

Anzeige

„Wir haben nun festgestellt, dass die Polarisierung unter bestimmten Bedingungen auch in sehr kleinen Domänen noch erhalten bleibt“, sagt Chun-Lin Jia vom Forschungszentrum Jülich. Ermittelt hatten die Forscher das an einem Ferroelektrikum, das am Max-Planck-Institut für Mikrostrukturphysik in Halle hergestellt wurde. Es enthält Blei, Zirkonium, Titan und Sauerstoff und wird Bleizirkonattitanat (PZT) genannt.

In dieser Kammer stellen die Forscher des Max-Planck-Instituts für Mikrostrukturphysik das ferroelektrische Material PZT mit Hilfe der gepulsten Laser-Abscheidung (PLD) her. Diese Methode ermöglicht es, die Bildung des Materials extrem genau zu kontrollieren. © MPI für Mikrostrukturphysik

Transmissionselektronen-Mikroskop im Einsatz

Jia und Knut Urban vom Ernst Ruska-Centrum – dem Aachener und Jülicher Kompetenzzentrum für Mikroskopie und Spektroskopie mit Elektronen – haben die Probe des PZT mit einem besonders empfindlichen und atomar auflösenden Transmissionselektronen-Mikroskop untersucht. Dieses aberrationskorrigierte Gerät behebt Abbildungsfehler des Linsensystems und liefert daher scharfe und kontrastreiche Aufnahmen von sehr kleinen Details.

Das Mikroskop ist sogar in der Lage, die Positionen von Atomen mit einer Genauigkeit von wenigen Pikometern zu bestimmen – ein Pikometer ist der tausendste Teil eines Nanometers. Mit dieser Technik lassen sich anders als mit einem herkömmlichen Transmissionselektronenmikroskop Sauerstoff-Atome des PZT lokalisieren, die ansonsten aufgrund ihres schwachen Streusignals kaum zu detektieren sind.

Genaue Position der Atome bestimmt

Indem die Forscher in der PZT-Probe nun die genauen Positionen der Sauerstoffatome einerseits sowie der Zirkonium- und Titan-Atome andererseits bestimmten, ermittelten sie die Orientierung der Dipole in jeder einzelnen von mehr als 250 Elementarzellen. Die Probe besteht aus dem Querschnitt durch eine PZT-Schicht, die etwa zwanzig Elementarzellen, also gut vierzig Atomlagen, dick ist.

Das ferroelektrische Material brachte Ionela Vrejoiu vom Max-Planck-Institut für Mikrostrukturphysik sehr akkurat auf eine einkristalline Strontiumtitanat-Unterlage auf. Diese hatte sie zudem mit einer dünnen Rutheniumoxid-Zwischenlage versehen, um die Grenzfläche zwischen Unterlage und ferroelektrischem Material besser bestimmen zu können. Auch die Grenze zwischen zwei Domänen mit umgekehrter Polarisierung war in der transmissionselektronenmikroskopischen Abbildung der quergeschnittenen Probe genau zu erkennen.

Beobachtungen überraschen Forscher

Dort, wo die Domänengrenze auf die Rutheniumoxid-Zwischenlage stößt, beobachteten die Jülicher Physiker nun etwas Unerwartetes – nämlich eine weitere Domäne von nur wenigen Quadratnanometern, in der die Orientierung des Ensembles der Dipole kontinuierlich um insgesamt 180 Grad dreht – die Wissenschaftler sprechen von einer flux-closure-Domäne.

„Solche Domänen kennen wir aus magnetischen Materialien, und für ferroelektrische Materialien haben einige Berechnungen sie ebenfalls vorhergesagt“, sagt Urban. „Aber wir haben sie erstmals direkt beobachtet.“ Trotz theoretischer Vorhersagen hielten viele Physiker ringförmig angeordnete Dipole bislang für unmöglich.

„Ich habe nicht geglaubt, dass sie existieren“, bekennt Marin Alexe, der die Ferroelektrika am Max-Planck-Institut in Halle erforscht. Dafür hat er auch einen guten Grund: Die Magnetisierung wird von Elektronen getragen und lässt sich mit geringem Energieaufwand in ihrer Richtung verändern. Die Umorientierung der Dipole in Ferroelektrika bedingt dagegen eine Verzerrung oder einen Umbau der Elementarzellen. Solche Veränderungen kosten wesentlich mehr Energie als eine magnetische Umorientierung, weil sie die Symmetrie des Kristalls stören. Eine Drehung um 180 Grad ist noch nachvollziehbar, aber eine schrittweise Verzerrung der Elementarzelle hielten viele Wissenschaftler schlicht für zu energieaufwändig.

Kontinuierliche Rotation der Dipole nachgewiesen

„Dass wir den Ringschluss des Dipolflusses und die kontinuierliche Rotation der Dipole jetzt nachgewiesen haben, dürfte auch einen praktischen Nutzen haben“, sagt Dietrich Hesse vom Max-Planck-Institut in Halle. „Offenbar findet die Natur auf diese Weise einen Weg, die Polarisierung auch in Strukturen von weniger als zehn mal zehn Nanometern aufrecht zu erhalten.“ Bislang gingen die Physiker davon aus, dass die Polarisierung in solchen Strukturen zusammenbricht, weil sie zu wenige Dipole enthalten.

Denn Ferroelektrizität ist ein kollektives Phänomen, die Dipole stützen sich also gewissermaßen gegenseitig. Sinkt ihre Zahl unter eine bestimmte Grenze, bringen kleinste elektrische Ladungen, die sich stets an Oberflächen bilden, die Ordnung der Dipole durcheinander. Auf diesen Effekt ist auch zurückzuführen, dass die Polarisierung an der oberen Seite der PZT-Schicht, die das Forscherteam nun untersuchte, verschwunden war. „Wir mussten also bislang davon ausgehen, dass wir die Domänen wegen der Depolarisierung nicht unter die Grenze von 20 mal 20 Nanometer verkleinern können“, sagt Alexe. Genau dies könnte nun doch möglich werden.

Wann bilden sich Strukturen mit einer ringförmigen Polarisierung?

„Wir werden nun die genauen Bedingungen untersuchen, unter denen sich Strukturen mit einer ringförmigen Polarisierung bilden“, so Alexe. Die Null und Eins eines Bits ließen sich dann codieren, indem die Dipole mal im Uhrzeigersinn und mal dagegen ausgerichtet werden. „Für entsprechende Untersuchungen haben wir bereits Ideen“, meint Hesse. „Doch bis es Datenspeicher gibt, die pro Quadratzoll dauerhaft mehrere Billionen Datenpunkte speichern, und diese so schnell aufnehmen und abgeben wie ein heutiger Arbeitsspeicher, werden noch einige Jahre verstreichen.“ (Science, 2011; doi:10.1126/science.1200605)

(Forschungszentrum Jülich / MPG, 18.03.2011 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Expedition Zukunft - Wie Wissenschaft und Technik unser Leben verändern von Nadja Pernat

Nanotechnologie für Dummies - Spannende Entdeckungen aus dem Reich der Zwerge von Richard D. Booker und Earl Boysen

Sie irren, Einstein! - Newton, Einstein, Heisenberg und Feynman diskutieren die Quantenphysik von Harald Fritzsch

Abschied von der Weltformel - Die Neuerfindung der Physik von Robert B. Laughlin

Wissen hoch 12 - Ergebnisse und Trends in Forschung und Technik von Harald Frater, Nadja Podbregar und Dieter Lohmann

Einsteins Spuk - Teleportation und weitere Mysterien der Quantenphysik von Anton Zeilinger

Laser - von Fritz K. Kneubühl und Markus W. Sigrist

Das Wunder des Lichts - DVD der BBC

Donnerwetter - Physik - von Peter Häußler

Skurrile Quantenwelt - von Silvia Arroyo Camejo

Faszination Nanotechnologie - von Uwe Hartmann

Die Wunder maschine - Die unendliche Geschichte der Daten- verarbeitung von Herbert Matis

Projekt Zukunft - Die Megatrends in Wissenschaft und Technik von Hans-Jürgen Warnecke

Top-Clicks der Woche