KATRIN: Großexperiment zur Messung der Neutrinomasse Eine Waage für Neutrinos - scinexx | Das Wissensmagazin
Anzeige
Anzeige

KATRIN: Großexperiment zur Messung der Neutrinomasse

Eine Waage für Neutrinos

Vorspektrometer von KATRIN © Forschungszentrum Karlsruhe

Wie groß ist die Masse des Neutrinos und welche Rolle spielt es bei der Entwicklung unseres Universums? Diese spannende Frage der Physik soll jetzt KATRIN, das KArlsruhe TRItium Neutrino Experiment, klären. KATRIN ist ein Projekt mehrerer europäischer und amerikanischer Institutionen.

Das zentrale Element – das so genannte Hauptspektrometer – wird einen Durchmesser von rund zehn Metern und eine Länge von 24 Metern haben. Am 5. September 2005 wurde nun mit dem ersten Spatenstich für die große Versuchshalle die dreijährige Aufbauphase des Experiments begonnen. KATRIN kostet rund 33 Millionen Euro und wird im Jahr 2008 mit ersten Messungen beginnen.

Schon heute arbeiten unter Federführung des Forschungszentrums Karlsruhe rund 100 Wissenschaftler, Techniker und Studenten an dem Großexperiment.

Neutrinos besitzen eine Masse

Neutrinos wurden als Elementarteilchen schon 1930 theoretisch vorausgesagt. Ein experimenteller Nachweis gelang erst 1957, da Neutrinos wegen ihrer geringen Wechselwirkung mit Materie nur schwer zu messen sind. Erst seit wenigen Jahren ist deshalb bekannt, dass Neutrinos eine kleine aber von Null verschiedene Masse haben. Offen bleibt die Frage, wie groß diese Masse ist.

Das im Forschungszentrum Karlsruhe in Bau befindliche Experiment KATRIN (KArlsruhe TRItium Neutrino Experiment) soll diese Frage aufklären, die als eine der Schlüsselfragen der modernen Physik gilt. Die Neutrinomasse hat Auswirkungen auf die Teilchenphysik, die Astrophysik und die Kosmologie. So haben Neutrinos nach dem Urknall die großräumige Struktur des Universums beeinflusst.

Anzeige

KATRIN nutzt den Effekt, aufgrund dessen der Physiker Wolfgang Pauli das Neutrino 1930 voraussagte: Beim Beta-Zerfall in Atomkernen wird ein Neutron in ein Proton und ein Elektron umgewandelt. Das entstehende Elektron hat aber keine feste Energie, sondern schwankt von Null bis zu einer Maximalenergie, die praktisch der gesamten beim Zerfall freiwerdenden Energie entspricht. Beim Beta-Zerfall wird aber immer eine konstante Energie freigesetzt.

Energie des Neutrinos unter der Lupe

Um fundamentale Grundgesetze der Physik (Energie- und Impulserhaltung) zu gewährleisten, muss der Unterschied zwischen der Energie der Elektronen (Ruhemasse plus Bewegungsenergie) und der Gesamtenergie von einem weiteren Teilchen übernommen werden, eben dem Neutrino. Die Energie des Neutrinos setzt sich nun wieder aus zwei Bestandteilen zusammen – seiner (Ruhe-)Masse und seiner Bewegungsenergie.

Da die Neutrinos aus dem Tritiumzerfall nicht nachgewiesen werden können, muss auf die Messung des Elektrons zurückgegriffen werden: Aus der genauen Beobachtung des Energiespektrums der Elektronen in der Nähe der Maximalenergie kann auf die Neutrinomasse geschlossen werden. Wenn das Neutrino eine Masse hat und damit, gemäß Einsteins berühmter Formel E=mc², eine Mindestenergie mit sich trägt, wird das Energiespektrum in der Nähe der Maximalenergie des Beta-Zerfalls modifiziert sein.

Als Beta-Strahler wird in KATRIN Tritium eingesetzt, eine schwere Form von Wasserstoff, die mit einer Halbwertszeit von 12,3 Jahren zerfällt.

Beim Beta-Zerfall von Tritium wird eine Gesamtenergie von 18 600 Elektronenvolt frei, die sich auf Elektron und Neutrino verteilt. Die Elektronen werden im Herzstück von KATRIN, dem riesigen elektrostatischen Hauptspektrometer, auf ihre Energie untersucht. Das Spektrometer wird einen Durchmesser von rund 10 Metern und eine Länge von 24 Metern haben; die Gesamtlänge des Experiments wird bei 70 Metern liegen.

Viele technische Herausforderungen zu überwinden

„Das Forschungszentrum Karlsruhe ist weltweit fast der einzige mögliche Standort für dieses anspruchsvolle Experiment“, erläutert Professor Johannes Blümer vom Institut für Kernphysik des Forschungszentrums Karlsruhe. „Hier sind alle notwendigen fachlichen Voraussetzungen zu finden: Das europaweit einmalige Tritium-Labor Karlsruhe (TLK), Erfahrungen mit Hochvakuum und Kryotechnik für große wissenschaftliche Apparaturen, Erfahrungen in der Supraleiterentwicklung, Know-how und Infrastruktur für Bau und Betrieb solcher Großanlagen und natürlich Exzellenz in Neutrino- und Astroteilchen-Physik. Schließlich kann auch nur eine Großforschungseinrichtung die Hauptlast der Finanzierung eines solchen Großgerätes übernehmen, die aus dem Haushalt der Helmholtz- Gemeinschaft bereitgestellt wird.“

Aus diesem Grund hat sich eine internationale Kollaboration, an der praktisch alle auf dem Gebiet Neutrinoforschung engagierten Forschungseinrichtungen in Europa und den USA beteiligt sind, für das Forschungszentrum Karlsruhe als Standort entschieden. Zurzeit sind zwölf Forschungseinrichtungen mit rund hundert Wissenschaftlern, Technikern und Studenten bei KATRIN engagiert.

Mit der Errichtung von KATRIN ist eine Vielzahl technologischer Herausforderungen verbunden. Dazu gehören die Bereitstellung und Reinhaltung des benötigten Tritiums über lange Zeiträume, die Temperaturstabilität der Quelle mit Abweichungen unter einem Promille bei 27 Kelvin (-246 Grad Celsius), ein extremes Hochvakuum (unter 10(-11) Hektopascal) im riesigen Volumen des Hauptspektrometers (rund 1.400 Kubikmeter), die Entwicklung und der Betrieb einer Vielzahl supraleitender Magnete sowie die präzise Stabilisierung einer Hochspannung von rund 20.000 Volt.

(idw – Forschungszentrum Karlsruhe, 07.09.2005 – DLO)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Albert Einstein - Wie die Zeit relativ wurde und die vierte Dimension entstand

News des Tages

Bücher zum Thema

Nanotechnologie und Nanoprozesse - Einführung, Bewertung von Wolfgang Fahrner

Die Genomfalle - Versprechungen der Gentechnik, ihre Nebenwirkungen und Folgen von Ursel Fuchs

Was zu entdecken bleibt - Über die Geheimnisse des Universums, den Ursprung des Lebens und die Zukunft der Menschheit von John R. Maddox

Was soll das alles? - Gedanken eines Physikers von Richard P. Feynman

Geheimnisse unseres Universums - Zeitreisen, Quantenwelt, Weltformel von Joachim Bublath

Top-Clicks der Woche

Anzeige
Anzeige