Neues Teleskop zeigt überraschende Einblicke in kosmische Gas- und Staubscheiben Planeten-Kinderstube entdeckt - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Neues Teleskop zeigt überraschende Einblicke in kosmische Gas- und Staubscheiben

Planeten-Kinderstube entdeckt

Künstlerische Darstellung der unmittelbaren Umgebung des jungen Sterns MWC 297 (Querschnitt). Die Messungen mit dem Very Large Telescope Interferometer der ESO und dem AMBER-Instrument zeigen, dass der Stern von einer Gas- und Staubscheibe umgeben ist und dass ein Sternwind über- und unterhalb der Scheibe ins All bläst. In der jetzt erstmals analysierten Region, die eine Ausdehnung vergleichbar der Bahn des Mars um die Sonne hat, können aus dem Material der Staubscheibe neue Planeten entstehen. © AMBER-Konsortium

Ein Forscherteam ist mithilfe des Very Large Telescope Interferometer der Europäischen Südsternwarte (ESO) auf bisher unbekannte Eigenschaften von innersten Sternumgebungen gestoßen. Da sich in genau diesen Regionen auch Planeten bilden, versprechen sich die Forscher zukünftig völlig neuartige Informationen über die Entstehungsbedingungen der Himmelskörper. Die Beobachtungsergebnisse wurden in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Um die unmittelbare Region eines jungen Sterns mit bisher unerreichter Genauigkeit untersuchen zu können, nutzte das international zusammengesetztes Forscherteam unter Leitung von Fabien Malbet von der Universität Grenoble zwei Teleskope des Very Large Telescope Interferometer (VLTI) der ESO auf dem Berg Cerro Paranal in Chile. Jedes der beiden Riesen-Teleskope hat einen Spiegeldurchmesser von 8,2 Meter, ihr Abstand untereinander beträgt 47 Meter. Beide Teleskope erzeugen Bilder des Zielobjekts – des jungen Sterns MWC 297 – im infraroten Spektralbereich. Werden diese Infrarot-Bilder gleichzeitig überlagert, erreicht man eine sehr hohe Auflösung – ein Verfahren, das man als Infrarot-Interferometrie bezeichnet. Die Messungen von MWC 297 erfolgten mit dem neuen Interferometrie-Instrument AMBER des VLTI, das es ermöglicht, gleichzeitig sowohl Bilder interferometrisch zu überlagern als auch das empfangene Licht in einzelne Wellenlängen (Spektroskopie) zu zerlegen.

Sternwind mit hoher Geschwindigkeit

Die Beobachtung und Analyse des jungen Sterns MWC 297 ist eines der ersten Forschungsergebnisse, das mit dem neuen AMBER-Instrument erzielt wurde. Dabei zeigte sich, dass MWC 297 von einer riesigen Scheibe aus Staub und Gas – einer Akkretionsscheibe – umgeben ist. Diese strahlt in vielen unterschiedlichen Wellenlängen im infraroten Spektralbereich. Zusätzlich geht von diesem Stern ein intensiver Sternwind mit hoher Geschwindigkeit aus. Dieser Sternwind strahlt im infraroten Spektralbereich nur Licht einer einzigen Wasserstoff-Emissionslinie, der Brackett-Gamma-Linie, aus. Mit AMBER ließen sich nun beide Lichtbestandteile getrennt messen. Dadurch war es erstmals möglich, sowohl die Ausdehnung der Akkretionsscheibe als auch des Sternwindes zu bestimmen. Die Infrarot-Strahlung der Scheibe entsteht in einem Gebiet, das 1,75 Astronomische Einheiten groß ist. Eine Astronomische Einheit entspricht der Entfernung der Erde von der Sonne (150 Millionen Kilometer). Das Wasserstofflicht des Sternwindes kommt hingegen aus einem wesentlich größeren Gebiet mit einer Ausdehnung von 2,5 Astronomischen Einheiten.

Zur genauen Auswertung der Messdaten setzten die Wissenschaftler eine neue Modellierungsmethode ein, mit deren Hilfe man die Akkretionsscheibe und den Sternwind gleichzeitig interpretieren kann. Demnach stößt der Stern das ionisierte Gas des Sternwindes in fast alle Raumrichtungen aus. Doch während sich das Gas in der Nähe der Scheibe mit einer Expansionsgeschwindigkeit von nur 60 Kilometer pro Sekunde bewegt, bläst der Sternwind in polarer Richtung mit Geschwindigkeiten von bis zu 600 Kilometer pro Sekunde. Diese Ergebnisse zeigen, dass es mit AMBER erstmals möglich ist, die physikalischen Eigenschaften von Staub und Gas in der unmittelbaren Umgebung von Sternen mit höchster Auflösung zu untersuchen.

„Strahlenden“ Überriesen im Visier

Das AMBER-Instrument am VLTI. Der komplexe Aufbau enthält eine große Anzahl von optischen und mechanischen Komponenten für die gleichzeitige Interferometrie und Spektroskopie von kosmischen Objekten. © AMBER-Konsortium

Beim zweiten Forschungsprojekt mit AMBER, das unter Leitung von Armando Domiciano de Souza vom Max-Planck-Institut für Radioastronomie in Bonn durchgeführt wurde, wurde erstmals Licht von drei der vier großen 8,2-Meter-Teleskope des VLTI erfolgreich überlagert. Im Gegensatz zu MWC 297 handelte es sich bei dem hier beobachteten Objekt CPD-57°2874 um keinen jungen, sondern einen massereichen älteren Stern. Dieser sogenannte Überriese ist ungefähr zehntausend Mal leuchtkräftiger als unsere Sonne und etwa fünfzig Mal so groß wie diese. Mit einer Entfernung von 8.000 Lichtjahren ist er etwa zehn Mal weiter von der Erde entfernt als MWC 297. Die detaillierten AMBER-Beobachtungen dieses Sterns tragen entscheidend zu einem besseren Verständnis bei, welche physikalischen Eigenschaften die Materie in ihrer Umgebung hat.

Anzeige

Das AMBER-Interferometrie-Instrument wurde für die Europäische Südsternwarte ESO von einem internationalen Konsortium gebaut, an dem folgende Institute beteiligt sind: Laboratoire Universitaire d’Astrophysique de Nice, Laboratoire d’Astrophysique de l’Observatoire de Grenoble, Laboratoire Gemini de l’Observatoire de la Cote d’Azur, Max-Planck-Institut für Radioastronomie in Bonn und Osservatorio Astrofisico di Arcetri in Florenz. Principal Investigator dieses Projektes ist Romain Petrov von der Universität Nizza. Die Entwicklung der Infrarot-Kamera und der Datenerfassungssoftware erfolgte unter Leitung von Prof. Gerd Weigelt, Direktor am Max-Planck-Institut für Radioastronomie in Bonn.

(MPG, 28.11.2005 – AHE)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Big Eyes - Riesenteleskope und die letzten Rätsel im Kosmos

News des Tages

Trauben in der MIkrowelle

Rätsel der funkensprühenden Weintrauben gelöst

Waren Neandertaler doch "Fleischfresser"?

Bücher zum Thema

Die ersten drei Minuten - Der Ursprung des Universums von Steven Weinberg, Friedrich Griese (Übersetzer)

Planeten beobachten - Praktische Anleitung für Amateurbeobachter und solche, die es werden wollen von Günter D. Roth

Top-Clicks der Woche

Anzeige
Anzeige