Anzeige
Biologie

Wie Zellen auf DNA-Schäden reagieren

Wissenschaftler identifizieren Startsignal für zelluläres Überlebensprogramm

MDC-Forscher haben gezeigt, dass das Sensor-Protein PARP-1 den Genschalter NF-kappaB, einen Überlebensfaktor für Krebszellen, aktiviert. © Michael Hinz / MDC)

Kommt es zur Schädigung des Erbguts, werden Reparaturenzyme und Genschalter aktiviert, die über das weitere Schicksal der betroffenen Zellen entscheiden. Berliner Forscher haben jetzt in der Fachzeitschrift „Molecular Cell“ gezeigt, wie der Genschalter NF-kappaB, der ein zelluläres Überlebensprogramm koordiniert, durch DNA-Schäden aktiviert wird.

{1r}

Die Wissenschaftler um Michael Hinz, Michael Stilmann und Professor Claus Scheidereit vom Max-Delbrück-Centrum (MDC) Berlin-Buch beschreiben in ihrer neuen Studie einen dualen Signalweg, der die Signalweiterleitung ermöglicht. NF-kappaB wird mit der Resistenz von Krebszellen gegen Strahlen- und Chemotherapie in Verbindung gebracht, die ihre Wirkung durch DNA-Schädigung entfalten.

Die menschliche Erbsubstanz wird täglich durch UV-Strahlen, Chemikalien oder giftige Stoffwechselprodukte bedroht. Um bleibende Schäden der Erbsubstanz zu verhindern, verfügen menschliche Zellen über Kontrollsysteme, die DNA-Schäden innerhalb von Sekunden erkennen und schnell reparieren.

Gegensätzliche zelluläre Reaktionen

Zusätzlich werden zwei gegensätzliche zelluläre Reaktionen ausgelöst, die über das Schicksal der betroffenen Zelle entscheiden. Zum einen können Zellen einen Prozess auslösen, der zu ihrem Absterben führt – programmierter Zelltod -, wenn die DNA-Reparatur nicht gelingt. Auf diese Weise wird verhindert, dass geschädigte DNA bei der Zellteilung an Tochterzellen weitergegeben wird.

Anzeige

Andererseits wird der Genschalter NF-kappaB aktiviert, der ein Überlebensprogramm koordiniert und damit dem programmierten Zelltod entgegenwirkt. Letzteres schützt Zellen, die erfolgreich repariert werden konnten, davor zerstört zu werden.

Zwei Wege führen zu NF-kappaB

Bereits 2009 hatte das Forscherteam von Scheidereit herausgefunden, dass der DNA-Schadenssensor PARP-1 den Genschalter NF-kappaB aktiviert. Das Protein PARP-1 erkennt Schäden in Sekundenschnelle und bildet anschließend im Zellkern einen aus mehreren Proteinen und weiteren Makromolekülen bestehenden Signalkomplex, der das Startsignal für die Auslösung des NF-kappaB Signalweges gibt.

Jetzt konnten Hinz und Stilmann eine zweite, parallel verlaufende Signalkaskade nachweisen, die ebenfalls für die NF-kappaB Aktivierung notwendig ist. Letztere erfordert das Sensorprotein ATM, das durch DNA-Schäden im Zellkern aktiviert wird, anschließend ins Zytoplasma wandert und dort die Bildung von spezifischen Proteinkomplexen auslöst.

Signalweiterleitung durch Modifizierungen ermöglicht

Nachfolgend werden Signalproteine, die für die NF-kappaB Aktivierung essentiell sind (unter anderem IKKgamma und IKKbeta), biochemisch verändert, zum Beispiel durch Anheftung von Phosphatgruppen oder eines kleinen regulatorischen Proteins (Ubiquitin). Wie die MDC-Forscher herausfanden, wird die Signalweiterleitung durch diese Modifizierungen ermöglicht.

Die Forscher konnten zeigen, dass die von PARP-1 und ATM gebildeten Signalkomplexe eine Reihe von Enzymen enthalten, die ihrerseits die biochemischen Veränderungen der Signalproteine katalysieren. Das koordinierte Zusammenspiel aller am Signalweg beteiligten Komponenten ist für die effiziente Signalübertragung essentiell. Nur wenn sowohl PARP-1 als auch ATM abhängige Signalkaskaden aktiv sind, kann NF-kappaB angeschaltet werden.

NF-kappaB: Verantwortlich für Tumortherapie-Resistenz?

Eine Reihe von experimentellen Befunden deutet darauf hin, dass die Aktivierung des von NF-kappaB vermittelten Überlebensprogramms für die Entwicklung und den Fortbestand von Tumorzellen eine wichtige Rolle spielt.

„Bei der Behandlung von Tumorerkrankungen kommt es vor, dass Chemo- und Strahlentherapie nicht anschlagen. Die Aktivierung des Überlebensfaktors NF-kappaB könnte eine der möglichen Ursachen sein“, sagt Scheidereit, „Sollte sich diese Hypothese bestätigen, könnte die Entschlüsselung des NF-kappaB Signalweges neue Ansätze für pharmakologische Weiterentwicklungen liefern und Verbesserung bestehender Tumor-Therapiekonzepte ermöglichen.“

(idw – Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch, 21.10.2010 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

NAchglühen von GRB 221009A

Rekord-Ausbruch überrascht Astronomen

Neue fossile Riesenschlange entdeckt

Warum Chinas Großstädte absinken

Landschaft unter dem Thwaites-Gletscher kartiert

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Der zweite Code - Epigenetik - oder wie wir unser Erbgut steuern können von Peter Spork

50 Schlüsselideen Genetik - von Mark Henderson

Intelligente Zellen - von Bruce Lipton

Die Macht der Gene - Schön wie Monroe, schlau wie Einstein von Markus Hengstschläger

Lehrbuch der Molekularen Zellbiologie - von Lutz Nover und Pascal von Koskull-Döring

Medikamente bei Krebs - von Annette Bopp

Was treibt das Leben an? - Eine Reise in den Mikrokosmus der Zelle von Stephan Berry

Thema Krebs - von Hilke Stamatiadis- Smidt, Harald zur Hausen und Otmar D. Wiestler

Dolly - Der Aufbruch ins biotechnische Zeitalter von Colin Tudge, Ian Wilmut & Keith Campbell

Die Genomfalle - Versprechungen der Gentechnik, ihre Nebenwirkungen und Folgen von Ursel Fuchs

Ingenieure des Lebens - DNA-Moleküle und Gentechniker von Huub Schellekens und Marian C Horzinek (Übersetzer)

Top-Clicks der Woche