Anzeige
Genetik

Komplexe Evolution mit wenigen Genen – wie geht das?

Enzym RNA-Polymerase II als entscheidender Akteur identifiziert

Wie hat es die Evolution gschafft, ein so hoch komplexes Wesen wie den Menschen hervorzubringen, ohne dafür die Zahl der benötigten Gene ins Unermessliche zu steigern? Welcher Trick dabei half, die vorhandenen Gene optimal auszunutzen haben jetzt deutsche und englische Forscher in zwei in der Fachzeitschrift „Science“ erschienenen Studien belegt.

Hohe Komplexität – wenig Gene

Vor über 500 Millionen Jahren gab es auf der Erde bereits Einzeller mit tausenden von Genen für unterschiedliche zelluläre Funktionen. Die Entwicklung schien zu immer mehr Genen mit immer neuen Funktionen zu gehen. Für einen hoch komplexen Organismus wie den Menschen hätte diese Entwicklung möglicherweise zu einigen Millionen Genen geführt.

{1l}

Umso überraschter waren die Wissenschaftler, als die Analyse des Humangenoms ergab, dass der Mensch nur etwa 25.000 Gene besitzt und damit nicht viel mehr als der Fadenwurm oder die Taufliege mit 15.000 bis 20.000 Genen. Offensichtlich ist die Evolution in den letzten 500 Millionen Jahren einen anderen Weg gegangen, um die Entwicklung von hoch komplexen Organismen voran zu treiben: sie hat die bereits vorhandenen Gene intelligenter genutzt. Aber wie hat sie das bewerkstelligt?

Das zeigen nun zwei Studien, die Wissenschaftler um Professor Dirk Eick vom GSF

Anzeige

– Forschungszentrums für Umwelt und Gesundheit zusammen mit der Arbeitsgruppe von Shona Murphy, von der Universität Oxford in England, jetzt in „Science“ veröffentlicht haben. Sie liefern Puzzle-Stücke zur Beantwortung der Frage, wie die Evolution in den letzten 500 Millionen Jahren die Entwicklung von hoch komplexen Organismen vorangetrieben hat, indem sie bereits vorhandenen Gene intelligenter genutzt hat.

Regulation in der Ablesephase als Schlüssel

Die Arbeiten von Eick und Murphy gehen auf die schon früher gemachte Beobachtung zurück, dass die Expression eines Gens nicht nur durch die Bindung des Enzyms RNA-Polymerase II an den Genort reguliert wird, sondern auch während der Ablesephase, wenn die Information eines Gens von DNA in RNA überschrieben wird. Dieses Enzym überschreibt die genetische Information der Erbsubstanz DNA in eine Boten-RNA – die so genannte messenger-RNA oder kurz mRNA -, die ihrerseits die Basis für die Synthese von Proteinen ist.

Während dieser Phase können Teile aus der neu synthetisierten RNA sofort wieder entfernt und die verbliebenen Reste neu miteinander kombiniert werden. Dabei kann die Neukombination der RNA so stark ausgeprägt sein, dass von einem Gen letztlich mehrere tausend unterschiedliche mRNAs – und damit Informationsträger für viele tausend unterschiedliche Proteine – erzeugt werden.

Phosphorylierung einer Aminosäure entscheidend

Die Wissenschaftler wollten es nun jedoch genauer wissen: Welche funktionelle Einheit der RNA-Polymerase II reguliert diese zusätzliche Vielfalt? Beim Menschen ist dafür eine Struktur aus 52 Wiederholungen einer Sequenz von sieben Aminosäuren verantwortlich. Im Fachjargon heißt sie „carboxyterminale Domäne“ oder kurz CTD und ist exakt dort in der RNA-Polymerase II lokalisiert, wo die wachsende RNA aus dem Enzym austritt. Weniger komplexe Organismen wie zum Beispiel der Fadenwurm oder die Bäckerhefe haben mit 36 beziehungsweise 26 Wiederholungen deutlich kürzere CTD-Strukturen und viele Einzeller und Bakterien haben diese Struktur nie entwickelt.

Obwohl die Notwendigkeit der CTD-Struktur für die Genexpression in höheren Lebewesen heute gut belegt ist, sind die molekularen Details, wie die Reifung der unterschiedlichen RNAs gesteuert wird, noch weitgehend unverstanden. Die Wissenschaftler konnten jetzt erstmals zeigen, dass durch die Modifizierung – genauer: die Phosphorylierung – der Aminosäure Serin an Position 7 in der CTD-Struktur die Reifung der RNA eines ganz bestimmten Gens gesteuert wird, nicht jedoch die Reifung der RNAs anderer Gene.

Damit ist die Grundlage geschaffen, das Bild der zellulären Genregulation durch neue Puzzle-Stücke weiter zu vervollständigen. Die Aufklärung von Mechanismen der Genregulation ist von grundlegender Bedeutung und notwendig, um Krebs und andere Erkrankungen auf molekularer Ebene besser zu verstehen und gezielter behandeln zu können.

(GSF, 14.12.2007 – NPO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Blutstropfen auf Fingerkuppe

Neues Diagnose-Verfahren erkennt zahlreiche Krebsarten

Wie KI das Internet schneller macht

Robo-Spinne soll Marshöhlen erkunden

Wie man beim Dart gewinnt

Diaschauen zum Thema

Dossiers zum Thema

Neandertaler - Neue Erkenntnisse über unsere Steinzeit-Cousins

Bücher zum Thema

Die neue Welt der Gene - Visionen - Rätsel - Grenzen von Joachim Bublath

Die sieben Töchter Evas - Warum wir alle von sieben Frauen abstammen - revolutionäre Erkenntnisse der Gen-Forschung von Bryan Sykes

Das Geheimnis des Lebens - Genetik, Urknall, Evolution von Joachim Bublath

Top-Clicks der Woche