Forscher klären Widersprüche in experimentellen Befunden zur Geschwindigkeit wachsender Netzwerke Gangschaltung für die Zellbewegung - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Forscher klären Widersprüche in experimentellen Befunden zur Geschwindigkeit wachsender Netzwerke

Gangschaltung für die Zellbewegung

Die Bewegung einer Zelle im Organismus kann mit Hilfe eines Systems variiert werden, das der Gangschaltung eines Autos ähnelt. Verantwortlich dafür ist die Flexibilität eines aus dem Protein Aktin wachsenden Netzwerkes, das die Zellmembran nach vorne drückt und damit für die Zellbewegung sorgt. Das konnten Heidelberger Physiker anhand eines theoretischen Modells belegen.

{1r}

Ein solches filamentöses Netzwerk ist in der Lage, sich vollständig umzuorganisieren, wenn es gegen einen größeren Widerstand arbeiten und damit den Druck für die Vorwärtsbewegung erhöhen muss, schreiben die Wissenschaftler in der Fachzeitschrift „Proceedings of the National Academy of Sciences“ (PNAS).

Bewegung tierischer Zellen früh entstanden

Die Bewegung tierischer Zellen wurde schon relativ früh in der Evolution entwickelt und basiert daher bei den meisten Zelltypen auf den gleichen grundlegenden Prinzipien. Das wichtigste Element der Zellbewegung ist das gerichtete Wachstum eines Netzwerkes aus Biopolymeren, das aus dem Strukturprotein Aktin aufgebaut wird. Diese so genannten Aktin-Filamente wachsen mit hoher Geschwindigkeit und können ständig neue Tochterstrukturen abzweigen. Durch die Kombination von Wachstum und Verzweigung entsteht ein dichtes Polymernetzwerk, das besonders gut dafür geeignet ist, die Zellmembran in der Zellbewegung nach vorne zu drücken.

Die Eigenschaft filamentöser Netzwerke, Bewegung und Kraft zu erzeugen, ist so robust, dass sie auch von Eindringlingen wie beispielsweise Listeria-Bakerien zweckentfremdet werden kann. Inzwischen ist es sogar gelungen, diesen Mechanismus vollständig außerhalb von Zellen nur im Reagenzglas nachzustellen. Experimentelle Untersuchungen verschiedener internationaler Arbeitsgruppen haben in den vergangenen Jahren viele neue Details dieses erstaunlichen Vorgangs ans Licht gebracht, zugleich aber auch widersprüchlich erscheinende Forschungsergebnisse erzeugt.

Anzeige

Mathematisches Modell sagt Organisation des Aktinnetzwerkes voraus

Die aktuelle Studie von Forschern der Universität Heidelberg belegt, dass Geschwindigkitsunterschiede bei der Zellbewegung maßgeblich von der Vorgeschichte des wachsenden Netzwerks beeinflusst werden, insbesondere davon, wie groß der Widerstand gegen die Bewegung vor einer Messung war.

Physik-Doktorand Julian Weichsel und sein wissenschaftlicher Betreuer Professor Ulrich Schwarz haben mit ihren Arbeiten am Institut für Theoretische Physik und am Forschungszentrum BioQuant ein mathematisches Modell entwickelt, das die räumliche Organisation des wachsenden Aktinnetzwerkes in Abhängigkeit von der Wachstumsgeschwindigkeit vorhersagt.

Netzwerk wächst bei hohen Geschwindigkeiten

Bei hohen Geschwindigkeiten wächst das Netzwerk in einer Form, die vor allem die rasche Zellbewegung erlaubt, gleichzeitig aber wenig Kraft erzeugt. Reicht die aufgebrachte Kraft nicht mehr aus, um den Druck nach vorne sicherzustellen, organisiert sich das Netzwerk sprunghaft um und ermöglicht damit eine größere Krafterzeugung. Dies führt letztlich zu einer robusteren, aber auch langsameren Vorwärtsbewegung.

Der Vorgang ist vergleichbar mit dem Getriebe eines Autos, das in einen niedrigeren Gang geschaltet wird, um mit geringerer Geschwindigkeit, aber größerem Kraftaufwand die Steigung eines Berges zu bewältigen. Die Widersprüche in den experimentellen Befunden zu unterschiedlich schnellen Zellbewegungen lassen sich erklären, wenn berücksichtigt wird, in welchem „Gang“ sich die Zelle gerade bewegt.

(idw – Universität Heidelberg, 25.03.2010 – DLO)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Die wunderbare Welt des Pi - Geheimnisvolle Eigenheiten einer allgegenwärtigen Zahl

Apoptose – der programmierte Zelltod - Die Lizenz zum Töten

Molekulare Motoren - Protein-„Maschinen“ als Triebfeder des Lebens

Neuland in drei Dimensionen - Ein Blick ins Innere der Zelle

News des Tages

Quark-Gluon-Plasma

Urmaterie im Miniformat erzeugt

Menschheit dreht Klima-Uhr zurück

Voyager 2 hat den interstellaren Raum erreicht

Reiches Leben im "Keller der Erde"

Asteroid Bennu hat gebundenes Wasser

Bücher zum Thema

Phänomen Mensch - Körper, Krankheit, Medizin von Andreas Sentker und Frank Wigger

Lehrbuch der Molekularen Zellbiologie - von Lutz Nover und Pascal von Koskull-Döring

Mathematik für Sonntagmorgen - 50 Geschichten aus Mathematik und Wissenschaft von George G. Szpiro

Was treibt das Leben an? - Eine Reise in den Mikrokosmus der Zelle von Stephan Berry

Wissen hoch 12 - Ergebnisse und Trends in Forschung und Technik von Harald Frater, Nadja Podbregar und Dieter Lohmann

Top-Clicks der Woche

Anzeige
Anzeige