Anzeige
Biologie

Baustellenverkehr in der Zelle

Aufbau des Spleißosoms entschlüsselt

Spleißosom in 3-D © Stark/MPIbpc

Damit unsere DNA gelesen werden kann, muss sie zunächst in RNA umgeschrieben und diese aufgetrennt und wieder zusammengesetzt – gespleißt – werden. Dafür sorgt eine eigene „Maschine“, das Spleißosom. Jetzt haben Wissenschaftler die Struktur dieses Zellbestandteils aufgeschlüsselt und können daraus neue Erkenntnisse über wichtige Zellvorgänge gewonnen.

Die Maschinerie, die in der Zelle den Vorgang des Spleißens erledigt, setzt sich selbst aus ungefähr 250 Proteinen zusammen. Wie aber arbeitet und funktioniert diese Maschinerie, das Spleißosom, genau? Ordnet es all seine Bestandteile nacheinander an oder besteht es aus einem Ganzen? Werden auf der Baustelle der Zelle Materialien – wie Ziegel, Fenster, Türen – einzeln für das Spleißen angeliefert oder kommt das Spleißosom als Fertighaus? Mitarbeiter der Forschungsgruppe von Karla Neugebauer am Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) haben auf diese Fragen nun eine Antwort gefunden: Das Spleißosom ordnet sich nacheinander an. Zudem haben die Dresdner Forscher beobachten können, dass die Messenger-RNA, ähnlich einem Bauplan, die Ankunft der Bestandteile des Spleißosoms durch Signale koordiniert.

Damit Zellen Proteine produzieren können, müssen zunächst Gene zu einer Messenger-RNA (mRNA) umgeschrieben werden, welche dann wiederum als Bauplan für die Proteine dient. Die Gene jedoch werden durch nicht kodierende Sequenzen, so genannte Introns, unterbrochen. Diese müssen aus der mRNA entfernt werden. Genau dieser Vorgang nennt sich Spleißen. Bisher war unklar, wie dieses Spleißen in der lebenden Zelle genau abläuft. Um dies herauszufinden, wurden Zwischenprodukte im Spleißosomaufbau in lebenden Hefezellen quervernetzt, gereinigt und anschließend analysiert. Vorher existierten Hinweise, dass sich die fünf Hauptbestandteile des Spleißosoms, so genannte snRNPs, gemeinsam anordnen. Diese Hinweise konnten nicht bestätigt werden.

Zusätzlich fand das Team heraus, dass ein Signal, der Cap Binding Complex (CBC), die Anordnung der Spleißosombestandteile reguliert. „Nun haben wir ein weiteres Beispiel dafür, wie zelluläre Maschinerien funktionieren“, sagt Karla Neugebauer und fügt hinzu: „Beispielsweise wussten wir, dass das Ribosom, zuständig für die Umsetzung der mRNA in Proteine, ähnlich groß und komplex wie das Spleißosom ist. Im Gegensatz zum Spleißosom wird es aber als komplett montierte Maschine mit allen Einzelteilen angeliefert. Die Zelle nutzt also für diese verschiedenen Schritte und Probleme durchaus unterschiedliche Lösungsstrategien“.

In der Tat ist das Spleißosom für das Funktionieren unseres Organismus extrem wichtig – ein Fehler beim Herausschneiden der Introns kann fatale Folgen haben und Ursache für Krankheiten sein. Je besser wir diese Vorgänge verstehen, desto besser können wir Fehlfunktionen abstellen.

Anzeige

(MPG, 07.07.2005 – NPO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Klima und Wirtschaft

Klimawandel: So teuer wird es

Neue Fossilien vom größten Meeressaurier

Wie schmeckte der Wein der Römer?

Wie Nagetiere ihre Schneidezähne schützen

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Bücher zum Thema

keine Buchtipps verknüpft

Top-Clicks der Woche