Anzeige
Biotechnologie

Amöbe mit komplexem Innenleben

Genom von Dictyostelium discoideum entschlüsselt

Ein internationales Forscherteam hat das Genom der sozialen Amöbe Dictyostelium discoideum entschlüsselt. Zu ihrer Überraschung fanden die Wissenschaftler etwa 12.500 Gene – der Mensch hat nur etwa doppelt so viele. Damit könnte Dictyostelium nicht nur zur Klärung zahlreicher zellbiologischer und evolutionsgeschichtlicher Fragen herangezogen werden, sondern auch zur Charakterisierung derjenigen menschlichen Gene, deren Funktion noch unbekannt ist oder deren Veränderungen Krankheiten verursachen. Dictyostelium discoideum wird weltweit als Forschungsobjekt genutzt, weil der Organismus zwischen ein- und vielzelligen Stadien wechseln kann.

{1l}

„Es scheint, dass Dictyostelium mehr von der Vielfalt des so genannten Urgenoms bewahrt hat als Tiere, Pflanzen und Pilze“, berichtet Professor Michael Schleicher von der Ludwig-Maximilians-Universität (LMU) München, der maßgeblich an dem Projekt beteiligt war. „Uns hat überrascht, dass der Organismus im Vergleich zum Menschen erstaunlich viele Gene hat.“ Das Genom-Projekt kann auch als deutscher Erfolg gesehen werden: Die Initiative „Sequenzierung von Genomen kleiner Organismen“ wurde von der Deutschen Forschungsgemeinschaft (DFG) gestartet.

34 Millionen Bausteine analysiert

„Mehr als die Hälfte des Dictyostelium-Genoms wurde in Deutschland sequenziert“, so Schleicher. Neben der LMU waren noch das Institut für Biochemie der Universität Köln und das Institut für Molekulare Biotechnologie (IMB) in Jena sowie Kollegen aus den USA und Großbritannien an der Studie beteiligt. In mehrjähriger Arbeit analysierte das Team rund 34 Millionen Bausteine des Winzlings.

Dictyostelium discoideum ist ein Bodenbewohner, der unter günstigen Bedingungen einzellig lebt. Erst wenn keine Nahrung mehr zu finden ist, stellt sich die einzelne Amöbe auf erstaunliche Weise darauf ein, Teil eines vielzelligen Organismus zu sein: Die ehemals einzelligen Amöben aggregieren und bilden zusammen einen so genannten Fruchtkörper: ein langer dünner Stiel, der sich vom Boden abhebt, mit einem kugeligen Sporenträger an der Spitze. Sporen, die so verbreitet werden, haben eine größere Chance, weiter entfernt und möglicherweise in einer besseren Umgebung zu landen. Diese komplexe Kooperation ist nur möglich, weil die einzelnen Amöben so miteinander interagieren, wie es sonst nur von Zellen in einem Gewebe oder in den Organen höherer Organismen bekannt ist.

Anzeige

Modellorganismus an der Grenze zwischen Einzeller und Vielzeller

„Dictyostelium ist wirklich ein toller Modellorganismus an der Grenze zwischen Einzeller und Vielzeller“, berichtet Schleicher. Wegen seiner besonderen Fähigkeiten wird der Organismus schon seit mehr als 50 Jahren in Labors genutzt und untersucht. Mit seiner Hilfe konnten wichtige Einsichten in komplexe Vorgänge wie Zellbewegung sowie die Signalübertragung und Interaktion zwischen Zellen gewonnen werden. Das Genom der sozialen Amöbe führt die Wissenschaft jetzt in eine vergleichsweise frühe Phase der Evolution komplexer Vielzeller zurück.

„Eine Stammbaumanalyse des Genoms zeigt, dass sich Dictyostelium wohl nach der Trennung der Pflanzen- und Tier-Linie abgezweigt hat“, so Schleicher. „Das war für uns etwas überraschend.“

Die Forscher fanden eine erstaunlich hohe Zahl an Genen, die sehr dicht auf den Chromosomen liegen und für schätzungsweise 12.500 Proteine kodieren. Im Genom ermittelten die Wissenschaftler viele repetitive Abschnitte, und auch in den Proteinen fanden sich häufig lange Sequenzen von nur einem Protein-Baustein, einer bestimmten Aminosäure. Auch der Stoffwechsel des Organismus scheint komplexer als bisher angenommen. Die Wissenschaftler fanden eine große Zahl von Enzymen und Transportproteinen, die darauf schließen lassen, dass wohl sehr viele kleine Moleküle produziert und aus dem Organismus exportiert werden. Bei Vielzellern finden sich an den Enden der Chromosomen als Schutz gegen „Verschleiß“ bestimmte Strukturen, so genannte Telomere. Bei Dictyostelium konnte eine neuartige Struktur nachgewiesen werden, die wohl die Funktion von Telomeren übernimmt.

Schleicher und Rost haben sich vor allem an der Analyse von Aktin und Aktin-bindenden Proteinen beteiligt. Diese gehören zum Zytoskelett, einem System aus Proteinenfilamenten und Motormolekülen, das höheren Zellen Struktur gibt sowie gerichtete Bewegung innerhalb der Zelle und auch Fortbewegung der ganzen Zelle ermöglicht. „Die Hauptsequenzierungsarbeit wurde in Jena gemacht“, berichtet Schleicher. „Ich war zunächst nur Berater, bin dann aber wegen unserer Zytoskelett-Erfahrung in die Analyse eingestiegen.“ Gerade auf diesem Gebiet hat Dictyostelium die Wissenschaftler auch überrascht.

30 verschiedene Aktin-Gene

„Erstaunlich ist, dass Dictyostelium 30 verschiedene Aktin-Gene hat, wovon 17 identische Proteinsequenzen haben“, so Schleicher. „Hefe beispielsweise hat nur ein Aktin-Gen. Wir haben keine Ahnung, warum das so unterschiedlich ist. Es ist sehr gut, dass das Dictyostelium- Genom entschlüsselt ist, weil wir uns jetzt sehr viel gezielter Protein-Familien ansehen können.“

Die Entschlüsselung ihres Genoms macht Modellorganismen immer sehr viel attraktiver – im Falle von Dictyostelium auch für die Medizin. „Wir sind bereits an mehreren Kooperationen beteiligt, um den Organismus als Infektionsmodell für die Legionärskrankheit zu nutzen“, berichtet Schleicher. „Das Bakterium Legionella ist der Verursacher dieser Erkrankung, und bestimmte, besonders infektiöse Legionellen überleben in Amöben. Wir versuchen jetzt herauszufinden, welche Wirtsproteine die Infektion aufrechterhalten.“

Interessant sind auch die langen identischen Abschnitte in einigen Proteinen von Dictyostelium. „Das könnte biomedizinisch wichtig sein, weil solche Abschnitte beim Menschen zu verschiedenen Krankheiten führen können“, meint Schleicher. „Grundsätzlich ist mein Credo aber, dass Grundlagenforschung, also auch die Entschlüsselung des Dictyostelium-Genoms, immer auch ein Wert an sich ist.“

(idw – Universität München, DFG, 06.05.2005 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Blutstropfen auf Fingerkuppe

Neues Diagnose-Verfahren erkennt zahlreiche Krebsarten

Wie KI das Internet schneller macht

Robo-Spinne soll Marshöhlen erkunden

Wie man beim Dart gewinnt

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Bücher zum Thema

Es wird ein Mensch gemacht - Möglichkeiten und Grenzen der Gentechnik von Jens Reich

Dolly - Der Aufbruch ins biotechnische Zeitalter von Colin Tudge, Ian Wilmut & Keith Campbell

Die Genomfalle - Versprechungen der Gentechnik, ihre Nebenwirkungen und Folgen von Ursel Fuchs

Top-Clicks der Woche