Wiederverwendbares Raketentriebwerk für Start von Kleinsatelliten - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Wiederverwendbares Raketentriebwerk für Start von Kleinsatelliten

Ob allein oder im Schwarm – kleine Satelliten mit einem Gewicht von wenigen Kilogramm (Nanosatelliten) bis zu mehreren hundert Kilogramm (Mikro- und Minisatelliten) werden technologisch immer ausgereifter und haben das Potenzial, die Branche grundlegend zu verändern. In den nächsten Jahren sollen hunderte solcher Kleinsatelliten in die Erdumlaufbahn befördert werden. Im Zuge des EU-Projekts SMILE (Small Innovative Launcher for Europe) haben Forscher am Institut für Bauweisen und Strukturtechnologie des Deutschen Zentrums für Luft- und Raumfahrt (DLR) ein wiederverwendbares Raketentriebwerk speziell für den Start solcher Satelliten entwickelt und in ersten Versuchen am Prüfstand erfolgreich getestet.

Notice: Undefined offset: 1 in /homepages/41/d755373748/htdocs/htdocs/wp-content/uploads/wpallimport/functions.php on line 44

Notice: Undefined offset: 1 in /homepages/41/d755373748/htdocs/htdocs/wp-content/uploads/wpallimport/functions.php on line 48

Bisher gelangen Kleinsatelliten oft an Bord von großen Raketen ins All, wenn dort noch Platz übrig ist. Primäres Ziel dieser Flüge ist es, große Satelliten in eine bestimmte Umlaufbahn zu bringen. Was Timing und Zielorbit angeht, müssen sich die kleinen Satelliten den großen unterordnen. Vierzehn europäische Forschungseinrichtungen und Unternehmen arbeiten deshalb im Projekt SMILE daran, einen wirtschaftlichen Raketenträger zu entwerfen. Mit dessen Hilfe sollen kleine Satelliten bis zu einem Gewicht von 70 Kilogramm in erdnahe Umlaufbahnen gebracht werden. Im Fokus des Projekts stehen die notwendigen Technologien für Antrieb, Bordelektronik und kosteneffiziente Produktion.

3D-Druck als Erfolgsfaktor

Das von den DLR-Wissenschaftlern speziell für diesen Anwendungsbereich entwickelte Raketentriebwerk setzt sich aus zwei zentralen Komponenten zusammen: dem metallischen Einspritzkopf und der keramischen Brennkammer. Der belgische Projektpartner 3D Systems realisierte den aus einer Nickel-Chrom-Legierung bestehenden Einspritzkopf mittels metallischem 3D-Druck. Beim 3D-Druck handelt es sich um ein additives Verfahren: Auf Basis digitaler Konstruktionsdaten wird dabei durch das Ablagern von Material schichtweise die gewünschte Struktur aufgebaut beziehungsweise gedruckt.

Anzeige

„Mit Hilfe dieser neuen Fertigungstechnologie benötigen wir signifikant weniger Einzelteile und Verfahrensschritte, was den Herstellungsprozess des Einspritzkopfes beschleunigt und die Produktionskosten senkt. Gleichzeitig konnten wir das Gewicht der Komponente deutlich reduzieren, was bei Raumfahrtanwendungen immer ein sehr wichtiger Faktor ist“, fasst Markus Kuhn, der das Projekt am DLR-Institut für Bauweisen und Strukturtechnologie in Stuttgart federführend betreut, zusammen.

Brennkammer aus Hochleistungskeramik

Für die Brennkammer verwendeten die Forscher einen speziellen Hochleistungswerkstoff: eine kohlenstofffaserverstärkte Keramik, die hauptsächlich aus Siliziumkarbid besteht und die maßgeblich am Stuttgarter DLR-Institut entwickelt wurde. Sie eignet sich besonders gut für Hochtemperaturanwendungen und hält auch extreme Temperaturwechsel zuverlässig aus. „Ein wichtiger Aspekt bei der Entwicklung war die Wiederverwendbarkeit: Lässt sich das gesamte System mehrfach einsetzen, sinken die Betriebskosten erheblich, was eine kommerzielle Umsetzung für Unternehmen attraktiv macht“, beschreibt Ilja Müller, DLR-Ingenieur für Raketenantriebe am Institut für Bauweisen und Strukturtechnologie, weiter.

Erste Tests mit Bravour bestanden

Bei Heißtests im September 2018 unterzog das Team um DLR-Forscher Markus Kuhn das Raketentriebwerk einer ersten Bewährungsprobe: Am Hochdruckprüfstand des spanischen Projektpartners PLD Space absolviertes es erfolgreich insgesamt 18 Versuche mit einer Brennzeit von bis zu 45 Sekunden und zeigte dabei sehr hohe Verbrennungseffizienzen von mehr als 90 Prozent. Zum Einsatz kamen dabei flüssiger Sauerstoff (liquid oxygen, LOx) und Kerosin.

(Deutsches Zentrum für Luft- und Raumfahrt (DLR), 15.11.2018 – NPO)

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Daten-Highway im All - Europa startet Laser-Kommunikations-System im Orbit

Ein Raumtransporter für alle Fälle - Das europäische ATV, die Raumstation und der Weg zum Mond

Space Shuttle: Ende einer Ära - Rückblick auf das amerikanische Raumfähren-Programm

Weltraumschrott: Alarm im Orbit - Was tun gegen den Raumfahrtmüll im erdnahen Weltraum?

News des Tages

Supernova

Supernova schuld an Massenaussterben?

Klimawandel bringt mehr starke El Ninos

Mehr Krebs durch Arbeitsstress?

Schatz im Schlamm

"Explosion" des Lebens überraschend kurz

Bücher zum Thema

Expedition Zukunft - Wie Wissenschaft und Technik unser Leben verändern von Nadja Pernat

Top-Clicks der Woche

Anzeige
Anzeige