Anzeige
Biologie

Organentwicklung messen

Max-Planck-Institut für molekulare Zellbiologie und Genetik

Ein Forscherteam aus Dresden und Wien entdeckt Zusammenhang zwischen der Verbindung dreidimensionaler Gewebestrukturen und der Entstehung ihrer Architektur. Das ermöglicht selbstorganisierende Gewebe zu entwickeln, die menschliche Organe simulieren.

Die Organe im menschlichen Körper bestehen aus komplexen Netzwerken flüssigkeitsgefüllter Gefäße und Schlaufen. Sie sind unterschiedlich geformt und ihre dreidimensionalen Strukturen sind je nach Organ unterschiedlich miteinander verbunden. Während sich ein Embryo entwickelt, bilden die Organe ihre Form und Gewebearchitektur aus einer einfachen Gruppe von Zellen heraus. Bislang fehlten Konzepte und Instrumente, um zu untersuchen, wie Form und das komplexe Gewebenetzwerk während der Organentwicklung entstehen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) und des MPI für Physik komplexer Systeme (MPI-PKS), beide in Dresden, sowie des Forschungsinstituts für Molekulare Pathologie (IMP) in Wien haben nun erstmals Messgrößen für die Organentwicklung definiert. Diese Studie liefert die notwendigen Werkzeuge, um das Gebiet der Organoide ¬– Miniaturorgane – in eine Ingenieurdisziplin zu transformieren und Modellsysteme für die menschliche Entwicklung zu erarbeiten.

Die Entwicklung eines Organismus erfordert ein komplexes Zusammenspiel von Zellen. Verschiedene Organe haben unterschiedliche geometrische Formen und verschieden verknüpfte dreidimensionale Strukturen, die die Funktion der mit Flüssigkeit gefüllten Gefäße und Schlaufen in den Organen bestimmen. Ein Beispiel dafür ist die verzweigte Netzwerkarchitektur der Niere, die die effiziente Blutfiltration unterstützt. Embryonalentwicklung in einem lebenden System zu beobachten, ist schwierig. Daher gibt es nur wenige Konzepte, die beschreiben, wie sich die Netzwerke aus flüssigkeitsgefüllten Gefäßen und Schlaufen entwickeln. Bisherige Studien haben gezeigt, wie Zellmechanik lokale Formveränderungen während der Entwicklung eines Organismus hervorruft. Es ist jedoch nicht klar, wie die Verbindungen zwischen den Geweben zustande kommen.

Der Forscher Keisuke Ishihara arbeitete zunächst in der Gruppe von Jan Brugués am MPI-CBG und MPI-PKS an dieser Frage, indem er bildgebende Verfahren und Theorie miteinander kombinierte. Später setzte er seine Arbeit in der Gruppe von Elly Tanaka am IMP fort. Zusammen mit seinem Kollegen Arghyadip Mukherjee, der ehemals in der Gruppe von Frank Jülicher am MPI-PKS forschte, und mit Jan Brugués arbeitete Keisuke mit Organoiden aus embryonalen Stammzellen der Maus, die ein komplexes Netzwerk von Epithelien bilden. Das sind Gewebe, welche Organe auskleiden und oft als Barriere fungieren. „Ich erinnere mich noch an den aufregenden Moment, als ich feststellte, dass sich einige Organoide in ein Gewebe mit mehreren Knospen verwandelt hatten. Sie ähnelten einer Weintraube aus. Die Veränderung der dreidimensionalen Architektur während der Entwicklung zu beschreiben blieb aber schwierig“, erinnert sich Keisuke und fügt hinzu: „Ich fand heraus, dass dieses organoide System erstaunliche innere Strukturen mit vielen Schlaufen oder Öffnungen erzeugt, die an einen Spielzeugball mit Löchern erinnern.“

Es hat viele Vorteile, die Entwicklung von Geweben an Organoiden zu erforschen: anders als gesamte Organismen können Organoide mit fortschrittlichen Mikroskopieverfahren beobachtet werden, sodass dynamische Veränderungen tief im Inneren des Gewebes sichtbar werden. Außerdem kann man sehr viele Organoide herstellen und ihre Umgebung kontrollieren, um den Verlauf ihrer Entwicklung zu beeinflussen. Die Forscher konnten somit die Form, die Anzahl und die Vernetzung des Epithels untersuchen. Sie beobachteten die Veränderungen in der inneren Struktur der Organoide im Zeitverlauf.

Anzeige

Keisuke fährt fort: „Wir entdeckten, dass die Verbindungen im Gewebe durch zwei verschiedene Prozesse entstehen: Entweder fusionieren zwei getrennte Epithelien oder ein einzelnes Epithel fusioniert sich selbst, indem es seine beiden Enden miteinander verbindet und dadurch eine Donut-förmige Schleife bildet.“ Die Forscher vermuten auf der Basis der Epitheloberflächen-Theorie, dass die Inflexibilität der Epithelien ein Schlüsselparameter ist, der die epitheliale Fusion und damit die Entwicklung der Gewebevernetzung steuert.

Jan Brugues, Frank Jülicher und Elly Tanaka, die die Studie leiteten, schlussfolgern: „Wir hoffen, dass unsere Ergebnisse zu einer neuen Sichtweise auf komplexe Gewebearchitekturen und das Zusammenspiel von Form und Netzwerkverbindungen bei der Organentwicklung führen werden. Unsere Studie wird dabei helfen, Organoide zu erforschen und weiterzuentwickeln. Außerdem zeigen wir, wie zelluläre Faktoren die Organentwicklung beeinflussen; das ist für Entwicklungszellbiologen, die sich für Organisationsprinzipien interessieren, interessant.“

Quelle: Max-Planck-Institut für molekulare Zellbiologie und Genetik

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

NAchglühen von GRB 221009A

Rekord-Ausbruch überrascht Astronomen

Neue fossile Riesenschlange entdeckt

Warum Chinas Großstädte absinken

Landschaft unter dem Thwaites-Gletscher kartiert

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

Bücher zum Thema

Biologie für Einsteiger - Prinzipien des Lebens verstehen von Olaf Fritsche

Forschung an embryonalen Stammzellen - von Gisela Badura-Lotter

Was treibt das Leben an? - Eine Reise in den Mikrokosmus der Zelle von Stephan Berry

Die Steinzeit steckt uns in den Knochen - Gesundheit als Erbe der Evolution von Detlev Ganten, Thilo Spahl und Thomas Deichmann

Mensch, Körper, Krankheit - von Renate Huch und Christian Bauer

Das Rätsel der Menschwerdung - von Josef H. Reichholf

Top-Clicks der Woche