Kampf gegen den Bot - scinexx | Das Wissensmagazin
Anzeige
Anzeige

Georg-August-Universität Göttingen

Kampf gegen den Bot

Bot-Netzwerke gehören zu den größten Sicherheitsproblemen im IT-Bereich – sie sind verantwortlich für Spam, Identitätsdiebstahl und sogenannte Denial-of-Service-Attacken. Wissenschaftler der Universität Göttingen haben nun in Zusammenarbeit mit der University of California in Santa Barbara ein neues System zur Erkennung solcher Schadsoftware im Internet entwickelt.

(pug) Bot-Netzwerke gehören zu den größten Sicherheitsproblemen im IT-Bereich – sie sind verantwortlich für Spam, Identitätsdiebstahl und sogenannte Denial-of-Service-Attacken. Wissenschaftler der Universität Göttingen haben nun in Zusammenarbeit mit der University of California in Santa Barbara ein neues System zur Erkennung solcher Schadsoftware im Internet entwickelt. Im Gegensatz zu bisherigen Systemen stellt der Göttinger „BotFinder“ eine geringere Belastung für das Netzwerk dar und ist in der Lage, auch verschlüsselte Daten zu analysieren. Zudem dringt es deutlich weniger in die Privatsphäre der betroffenen Nutzer ein.

Bot-Netzwerke werden von einer Software gesteuert, die einen infizierten Computer an ein großes, unter krimineller Kontrolle stehendes Netzwerk anbindet. Klassische auf einem Computer installierte Virenscanner erfordern regelmäßige Aktualisierungen durch den Nutzer und sind nur bedingt in der Lage, Bot-Infektionen überhaupt zu erkennen. Netzwerkbasierte Systeme versuchen, den Datentransfer zwischen dem infizierten Rechner und dem Kontrollserver des Bot-Netzwerkes zu finden und auszuwerten. Bislang war es erforderlich, dass dabei jedes Datenpaket genau untersucht und der gesamte Inhalt ausgewertet wurde – eine sehr aufwändige Methode, die außerdem bei verschlüsselten Übertragungen nicht funktioniert.

Statistische Analyse des Datenverkehrs statt Einzeluntersuchung von Datenpaketen

„BotFinder“ hingegen ist in der Lage, Bot-Infektionen durch eine statistische Analyse des Datenverkehrs zu erkennen. „Wir benötigen keine inhaltliche Untersuchung der einzelnen Pakete mehr, sondern ermitteln statistische Schlüsselfaktoren, die den Datenverkehr infizierter Rechner von dem normaler Computer unterscheiden“, erläutert Dr. Florian Tegeler, der das System im Rahmen seiner Doktorarbeit in der Netzwerkgruppe am Institut für Informatik der Universität Göttingen entwickelte. BotFinder nutzt Techniken des maschinellen Lernens und erzeugt Modelle des Datenverkehrs mit dem Bot-Netzwerk. „Unsere Tests haben gezeigt, dass BotFinder eine hohe Erkennungsrate bei niedriger Fehlerquote aufwies“, so Dr. Tegeler. „Darüber hinaus arbeitet es leistungsstärker als bisherige netzwerkbasierte Lösungen.“

(Georg-August-Universität Göttingen, 20.03.2013 – KSA)

Anzeige

Anzeige

In den Schlagzeilen

Diaschauen zum Thema

Dossiers zum Thema

Mustererkennung - „Mustergültige Erkenntnis“ in Astrophysik, Musik und Medizin

News des Tages

Wassermoleküle

Wasser: Doch keine zwei Varianten?

Fördert Salz Allergien?

Neptun: Rätsel des "unmöglichen" Mondes gelöst

Bücher zum Thema

Expedition Zukunft - Wie Wissenschaft und Technik unser Leben verändern von Nadja Pernat

Menschmaschinen - Wie uns die Zukunftstechnologien neu erschaffen von Rodney Brooks

Top-Clicks der Woche

Anzeige
Anzeige