• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 31.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Pigmentstörungen auf der Spur

Aktivierungsmechanismus von Schlüsselenzymen geklärt

Albinos und Menschen mit anormal vielen Leberflecken oder anderen Pigmentstörungen haben eines gemeinsam: Bei ihnen funktioniert ein bestimmtes Enzym nicht so wie es soll. Was genau bei der Aktivierung dieses Moleküls falsch läuft und wie die Prozesse dabei genau ablaufen, haben jetzt Wissenschaftler erstmals direkt beobachtet.
Albinomädchen in Honduras

Albinomädchen in Honduras

Pandinus imperator, der Kaiserskorpion, ist nicht nur als Haustier relativ beliebt, er ist auch für die Forschung interessant. Grund dafür ist sein blaues Blut, das den Sauerstoff transportiert und im ganzen Körper verteilt. Der blaue Blutfarbstoff Hämocyanin des Kaiserskorpions und anderer Gliederfüßer gehört wie die Tyrosinase, das Schlüsselenzym der Melaninsynthese, zu einer Gruppe von besonderen Molekülen, die in allen Organismen vorkommen und viele unterschiedliche Funktionen haben: Färbung von Haut, Haaren und Augen, Immunreaktionen, Wundheilung oder Braunfärbung beim Obst.

"Bei einer Mutation der Enzyme kann es zu Albinismus und bei einer verstärkten Produktion des Pigments Melanin zu Leberflecken, aber auch zu Melanomen kommen", erklärt Heinz Decker, Professor für Biophysik an der Johannes Gutenberg-Universität Mainz. Der Wissenschaftler untersucht seit 20 Jahren Hämocyanine und die verwandten Tyrosinasen. In Zusammenarbeit mit Wissenschaftlern des Baylor College of Medicine in Houston konnte er nun erstmals zeigen, wie es genau dazu kommt, dass die Enzyme aktiv werden und so ihre jeweilige Funktion erfüllen. Die Arbeit wurde nun in dem Fachmagazin „Structure“ veröffentlicht.

Amorpher Eisfilm verrät Molekülprozesse


Die Wissenschaftler untersuchten Hämocyanin-Moleküle des Kaiserskorpions mit Hilfe der Kryo-Elektronenmikroskopie. Dazu werden die Moleküle in einem extrem dünnen Wasserfilm gelöst und eingefroren. Bei der Technik kristallisiert das Wasser nicht aus, sondern es bildet sich ein amorpher Eisfilm, der nun mittels Elektronenmikroskopie untersucht werden kann. "Der Vorteil dieser Methode liegt darin, dass wir bis ins Innere der Moleküle vordringen können und so genau erkennen, was sich dort abspielt", so Decker.


Prozesse am aktiven Zentrum sichtbar gemacht


Denn im Inneren befindet sich das "aktive Zentrum", die Stelle des Enzyms, an dem es seine Funktion ausführt. Zunächst ist der Zugang zu dem aktiven Zentrum verschlossen. Kommt es dann zu einem Reiz, der von den Wissenschaftlern in dem Versuch durch ein Lösungsmittel ausgelöst wurde, dann
verändert sich die Struktur. "Wir haben gesehen, dass sich eine bestimmte Domäne des Moleküls bewegen muss, damit die Türe zum aktiven Zentrum geöffnet und so die enzymatische Aktivität gestartet wird.

Dadurch können sperrige Phenole als Substrat zum aktiven Zentrum gelangen, um hier durch Bindung von Sauerstoff zu aktiven Chinonen umgesetzt zu werden, die dann selbstständig weiter zum Melanin synthetisieren." Decker hat in seinen Arbeiten diesen Aktivierungsmechanismus seit vielen Jahren als Hypothese vorgeschlagen- nun konnte er auch erstmals direkt beobachtet werden.

Schlüssel zu Albinismus oder anderen Pigmentstörungen


Die Beobachtungen bei dem Sauerstofftransport-Molekül Hämocyanin lassen sich auch auf Tyrosinasen übertragen. Hämocyanin ist mit den Tyrosinasen so stark verwandt, dass sie sich über den beschriebenen Aktivierungsmechanismus sogar zu Tyrosinasen umwandeln lassen - auch dies haben die Versuche gezeigt.

Damit eröffnen sich neue Chancen für ein besseres Verständnis von Störungen oder Krankheiten wie dem Albinismus und dem malignen Melanom. In der Kosmetikindustrie besteht Interesse an den Zusammenhängen, weil über die Melaninbildung die Färbung von Haut und Haaren gesteuert wird. Die Lebensmittelindustrie sieht Perspektiven, durch die Verhinderung des Mechanismus einmal die Braunfärbung von Obst, beispielsweise Bananenschalen, zu unterbinden.
(Universität Mainz, 27.05.2009 - NPO)
 
Printer IconShare Icon