Anzeige
Neurobiologie

Sehen als Balanceakt

Wie neuronale Verschaltungen die ersten Schritte der Bildverarbeitung im Gehirn realisieren

Anordnung der Zellen in der primären Sehrinde. Unterschiedliche Farben symbolisieren die bevorzugte Kantenorientierung von Zellen an der jeweiligen Position. Zellen beispielsweise in der eingekreisten Region sind mit Zellen sehr unterschiedlicher bevorzugter Orientierungen verschaltet, während Zellen in homogenen Zonen (z.B. im blauen Bereich) vor allem Eingaben von gleichartigen Zellen erhalten. © K. Obermayerv

Wissenschaftler haben herausgefunden, wie neuronale Verschaltungen die ersten Schritte der Bildverarbeitung im Gehirn realisieren. Wie die Forscher in der Fachzeitschrift „Cerebral Cortex“ zeigen konnten, ist ein präzises Gleichgewicht aus hemmenden und erregenden Signalen die Grundlage dafür, dass wir bei der Betrachtung eines Bildes zuverlässig den Verlauf von Kanten und Konturen analysieren können.

{1r}

Damit wir das, was wir sehen, auch erkennen können, muss das Gehirn eine ganze Reihe von Rechenleistungen erbringen. In den ersten Schritten neuronaler Bildverarbeitung wird die Bildinformation, die auf die Retina fällt an das Großhirn übertragen und dort von stark gekoppelten Netzwerken von Neuronen verarbeitet. Dabei ist entscheidend, wie stark die erregende sowie die hemmende Rückkoppelung ist: zu starke Erregung könnte zu migräne- und epilepsieartigen Zuständen, zu starke Hemmung andererseits zu einer Blockade der Verarbeitung führen.

Die genauen neuronalen Verschaltungen, die dem zugrunde liegen, haben nun Forscher des Bernstein Zentrums für Computational Neuroscience und der Technischen Universität (TU) Berlin gemeinsam mit ihren Kollegen am Massachusetts Institute of Technology (USA) systematisch analysiert. Ihre Ergebnisse zeigen, dass erregende und hemmende Signale in einem präzisen Gleichgewicht stehen müssen und dabei erstaunlich nah an der Grenze zu einer kritischen Überaktivierung sind. Die neue Studie trägt außerdem dazu bei, besser zu verstehen, wie Aufmerksamkeitsprozesse das Sehverhalten beeinflussen.

Verlauf von Kanten und Konturen analysieren

Eine Aufgabe der primären Sehrinde, der ersten Verschaltungsstufe für Bildinformationen im Gehirn, besteht darin, den Verlauf von Kanten und Konturen zu analysieren. Zellen in diesem Hirnareal reagieren bevorzugt auf Kanten mit festgelegter Orientierung – einige sind auf horizontale Richtungen spezialisiert, andere zum Beispiel auf Konturen in einem Winkel von 40 Grad.

Anzeige

Es gibt unterschiedliche wissenschaftliche Modelle, die erklären, wie die Funktion dieser Nervenzellen zustande kommt. Um zwischen verschiedenen möglichen Mechanismen zu unterscheiden, berücksichtigten die Wissenschaftler um Professor Dr. Klaus Obermayer, TU Berlin, in ihrer Studie feine Unterschiede in den Eigenschaften der Zellen. Die Zellen der Sehrinde erhalten neuronale Eingangssignale von ihren jeweiligen Nachbarzellen. Je nachdem, wo in der Sehrinde die Zelle liegt, ist aber auch die Zusammensetzung der Eingangssignale recht unterschiedlich. Dennoch erfüllen alle Zellen die gleiche Rechenaufgabe: Sie reagieren sehr präzise auf die Orientierung von Linien.

In ihrem Modell testen die Wissenschaftler systematisch, welches Verschaltungsmuster die Reaktion aller Zellen auf ihre unterschiedlichen Eingangssignale widerspiegeln kann. „Damit haben wir nicht nur ein Modell gefunden, das die Daten erklärt, sondern auch ausgeschlossen, dass ein anderes Modell die Daten ebenso gut erklären könnte“, sagt Obermayer. Das Modell der Wissenschaftler zeigt, dass es sehr viele sowohl aktivierende als auch hemmende lokale Kopplung zwischen den Zellen der primären Sehrinde gibt. Der Beitrag der rückgekoppelten Signale übersteigt dabei den Beitrag der direkten Eingangssignale aus der Netzhaut um das doppelte.

Wichtige neurobiologische Mechanismen besser verstehen

Warum aber investiert das Gehirn so viel Energie in die gleichzeitige Aktivierung und Hemmung bestimmter Zellen? Könnte es nicht theoretisch auch einfacher gehen, Konturen und Kanten zu berechnen? Auch auf diese Fragen haben die Wissenschaftler eine plausible Antwort: Wie sie in ihren Computersimulationen zeigten, führt die komplexe Verschaltungsstruktur dazu, dass sich die Aktivität der Zellen in der primären Sehrinde sehr leicht durch kleine Einflüsse von außen justieren lässt. Solche Justierungen könnten zum Beispiel durch Aufmerksamkeitsprozesse vorgenommen werden.

Es ist bereits bekannt, dass höhere Hirnfunktionen wie Aufmerksamkeit oder Vorwissen schon in die ersten Schritte visueller Bildverarbeitung im Gehirn eingreifen – wenn wir etwas aufmerksam betrachten, sind die Neurone der Sehrinde aktiver und wir sehen schärfer. Das Modell der Wissenschaftler trägt nun dazu bei, die zugrundeliegenden neurobiologischen Mechanismen besser zu verstehen.

(idw – Nationales Bernstein Netzwerk Computational Neuroscience, 30.03.2009 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

NAchglühen von GRB 221009A

Rekord-Ausbruch überrascht Astronomen

Neue fossile Riesenschlange entdeckt

Warum Chinas Großstädte absinken

Landschaft unter dem Thwaites-Gletscher kartiert

Diaschauen zum Thema

Dossiers zum Thema

Duft - Von der Nase ins Gehirn

Bücher zum Thema

Medizin für das Gehirn - Hrsg. Spektrum der Wissenschaft

Dem Rätsel des Riechens auf der Spur - Grundlagen der Duft- wahrnehmung von Hanns Hatt

Eine kurze Reise durch Geist und Gehirn - von Vilaynur S. Ramachandran

Descartes' Irrtum - Fühlen, Denken und das menschliche Gehirn von Antonio R. Damasio

Der Beobachter im Gehirn - Essays zur Hirnforschung von Wolf Singer

Die blinde Frau, die sehen kann - Rätselhafte Phänomene unseres Bewußtseins von Vilaynur S. Ramachandran und Sandra Blakeslee

Top-Clicks der Woche