Anzeige
Astronomie

Sternexplosionen brauchen zweiten Anlauf

Neue Erkenntnisse über den Energietransport bei Supernovaexplosionen vorgelegt

Ein Stern mit 15 Sonnenmassen explodiert. Das Bild zeigt die Momentaufnahme einer Supernova nach 700 Millisekunden. © MPI für Astrophysik

Astrophysiker haben ein recht genaues Bild vom Ablauf einer Sternexplosion. Allerdings rätseln sie noch immer darüber, wie der Energietransport beim Sternenknall genau funktioniert. Münchener Wissenschaftler haben nun neue Erkenntnisse dazu geliefert über die sie in der Fachzeitschrift „Astrophysical Journal“ berichten.

Da nahe Supernovae sehr selten und daher kaum live zu beobachten sind, simulierten Andreas Marek und Hans-Thomas Janka vom Max-Planck-Institut für Astrophysik die Prozesse in einem Computermodell. Dabei gelang es zum ersten Mal, die Wechselwirkung von Neutrinos und Materie bei Sternen mit 11- bis 15-facher Sonnenmasse detailliert nachzubilden.

Chemische Fabriken des Weltalls

Sterne sind die chemischen Fabriken des Weltalls. Unter unvorstellbarem Druck und extrem hohen Temperaturen verschmelzen im Sterninnern Wasserstoffatome zu Helium. Bei geeigneten Bedingungen läuft die Verbrennungskette weiter: Vereinfacht gesagt entsteht dann aus der Fusion von Heliumatomen das schwerere Element Kohlenstoff, das seinerseits Sauerstoff produziert.

Sterne, deren Masse mindestens das Achtfache unserer Sonne beträgt, führen die Verbrennungsprozesse im Kern bis zu noch schwereren Elementen fort, Sterne mit mehr als zehnfacher Masse der Sonne sogar bis zum Element Eisen. Dafür gestaltet sich das Ende von schweren Sternen im Vergleich zu ihren leichten Kollegen ungleich dramatischer – nach maximal 100 Millionen Jahren Lebenszeit beschließen sie ihr Dasein mit einer gewaltigen Supernova-Explosion.

Als gesichert gilt, dass massereiche Sterne zunächst implodieren. In seinem fortgeschrittenen Stadium gleicht der Stern einer Zwiebel: In seiner Mitte befindet sich ein stabiler Eisenkern, in den umgebenden Schalen die leichteren Elemente bis zum Wasserstoff. Mit der Produktion von Eisen stoppen die Verbrennungsprozesse, die den Stern bisher im Kräftegleichgewicht gehalten haben. Der Grund: Um Eisenatome zu verschmelzen müsste von außen Energie zugeführt werden.

Anzeige
Die Computersimulation einer Supernova zeigt vier Momentaufnahmen der Explosion eines Sterns mit 15 Sonnenmassen - nach 525, 610, 650 und 700 Millisekunden. © MPI für Astrophysik

Spielball der Gravitation

So wird der Stern zum Spielball der Gravitation und kollabiert. Dabei presst die Schwerkraft den Kern immer weiter zusammen, bis sich sogar die Struktur der Eisenatome auflöst: Die Elektronen verschmelzen mit den Protonen, so dass ein Neutronenstern und eine große Menge Neutrinos entstehen.

Beim Kollaps stürzt die Materie der äußeren Sternschichten auf den zentralen Neutronenkern. Durch den Aufprall auf den kompakten Kern bildet sich eine Stoßfront und beginnt im kollabierenden Stern nach außen zu laufen. Dabei heizt der intensive Neutrinostrom aus dem entstehenden Neutronenstern die Materie hinter der Stoßwelle und schiebt sie kräftig an, so dass die äußeren Sternschichten weggeschleudert werden und der Stern in einer gigantischen Supernovaexplosion zerbirst. Zurück bleibt ein etwa 20 Kilometer kleiner Neutronenstern oder in extremen Fällen ein Schwarzes Loch.

Modell mit Schwachstelle

So plausibel das bisherige Modell auch klingt – es funktioniert nur für Sterne bis zu etwa zehn Sonnenmassen. Bei schwereren Sternen birgt die Erklärung eine Schwachstelle: In Computerberechnungen kommt die von der Neutrinoheizung befeuerte Explosion nach etwa 100 Kilometern zum Stillstand. Grund dafür ist das dichte Material im Kern, das die Neutrinos abbremst. Zudem stürzen in der Frühphase der Supernova auch noch Trümmer der Sternhülle ins Zentrum und behindern die Ausbreitung der Stoßwelle. Beobachtungen von Supernovae und Supernova-Überresten zeigen jedoch, dass die Stoßfront bei einem Radius von 100 Millionen Kilometern erfolgreich die Sternoberfläche erreicht und dabei die Sternhülle wegsprengen muss. Somit ist klar, dass die Explosion einen zweiten Anlauf braucht. Aber was spielt sich ab und was bringt die notwendige Energie?

Mit ihren Simulationen von Sternen mit 11- bis 15-facher Masse der Sonne bestätigten die Wissenschaftler vom Exzellenzcluster Universe (TU München) jetzt eine schon länger bekannte Hypothese. Auch bei solch massereichen Sternen kann die Explosion durch Neutrinos angetriebenen werden. Anders als bei kleineren Sternen liefern hier jedoch hydrodynamische Instabilitäten den entscheidenden Impuls. Die von den Neutrinos aufgeheizten Sternschichten werden durch konvektive Strömungen verwirbelt, ähnlich wie kochender Brei in einem Topf. Dabei entwickelt die Materie pilzförmige Blasen, in denen heißes Plasma aufsteigt.

Stoßfront beult aus

Ausschlaggebend ist jedoch nach Angaben der Forscher ein Phänomen, das in der Fachsprache mit „Standing Accretion Shock Instability“, kurz SASI, bezeichnet wird und das in früheren Modellen nicht berücksichtigt wurde. Es sorgt dafür, dass die Stoßfront zunehmend heftiger hin und her oszilliert und so immer weiter „ausbeult“. Dadurch wird die Stoßwelle zu immer größeren Distanzen vorangetrieben und die Konvektion verstärkt sich. Infolgedessen setzt ein dritter Effekt ein: Im SASI-Modell ist die Materie den hochenergetischen Neutrinos länger ausgesetzt, was einen deutlich höheren Energietransfer ermöglicht.

„Unsere Untersuchungen an zweidimensionalen Computermodellen bedeuten einen wichtigen Fortschritt im Verständnis, wie massereiche Sterne ab zehn Sonnenmassen explodieren“, erklärt Janka. „Möglicherweise gibt es noch andere Phänomene, welche die durch Neutrinos und hydrodynamische Instabilitäten ausgelöste Explosion verstärken. So könnte beispielsweise, wie eine Konkurrenzgruppe behauptet, die SASI große Pulsationsschwingungen des jungen Neutronensterns anregen, der dann wie eine Glocke Schallwellen erzeugen würde. Die Energie dieser Schallwellen könnte die Explosion zusätzlich anschieben. Künftig werden wir uns in unseren Simulationsrechnungen daher auf kombinierte Wirkmechanismen konzentrieren.“

Nur Teil des Puzzles gelöst

Gleichzeitig weist Janka darauf hin, dass die aktuellen, erfolgreichen Simulationen zwar ein wichtiges Teil des Puzzles sind. Für das ganze Bild fehlten aber noch eine Menge Informationen. „Bis wir das Problem der Supernova-Explosion zufrieden stellend gelöst haben, vergehen sicher noch ein paar Jahre. Außerdem steht uns noch die Aufgabe bevor, unsere 2D-Simulationen in ein dreidimensionales Computermodell zu übertragen: Die Physik des Neutrino-gesteuerten Energietransports ist so komplex, dass 3D-Simulationen selbst Höchstleistungsrechner an ihre Grenzen bringen.“

Exzellenzcluster Universe

Der Excellence Cluster Universe wurde im Oktober 2006 ins Leben gerufen – mit dem Ziel, den ungelösten Fragen des Alls auf die Spur zu kommen: In dieser bis dato einmaligen Forschungseinrichtung arbeiten Wissenschaftler verschiedener Disziplinen daran, das große Geheimnis Universum zu entschlüsseln. Der Cluster hat seinen Standort am TUM-

Forschungszentrum in Garching. Das interdisziplinäre Projekt vereint die Physik-Fakultäten der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität (LMU). Weitere Partner sind die Universitätssternwarte München (USM), mehrere Max-Planck-Institute und die Europäische Südsternwarte (ESO).

(idw – Excellence Cluster „Universe“, 03.02.2009 – DLO)

Teilen:
Anzeige

In den Schlagzeilen

News des Tages

Diaschauen zum Thema

Dossiers zum Thema

Bücher zum Thema

Sternentstehung - Vom Urknall bis zur Sonne von Ralf Klessen

Was zu entdecken bleibt - Über die Geheimnisse des Universums, den Ursprung des Lebens und die Zukunft der Menschheit von John R. Maddox

Der Weltraum - Planeten, Sterne, Galaxien von Heather Couper & Nigel Henbest

Aktive Sterne - Laboratorien der solaren Astrophysik von Klaus G. Strassmeier

Top-Clicks der Woche