• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 27.06.2016
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Denken ist kein Monolog

Anpassungsfähigkeit des Gehirns umfasst Umbau beider Synapsenseiten

Was wären wir ohne unser Gedächtnis oder die Fähigkeit Unwichtiges zu vergessen? Beides wird erst durch den flexiblen Auf- und Abbau von Kommunikationseinheiten zwischen Gehirnzellen möglich. Bisher wurde nur der Empfängerseite eine aktive Rolle bei diesem Umbau zugemessen. Eine falsche Annahme, wie Wissenschaftler jetzt in „Neuron“ zeigen. Denn auch die Sendeeinheit reagiert aktiv auf aktuelle Bedürfnisse und trägt so maßgeblich zur Anpassungsfähigkeit des Gehirns bei.
Sendeeinheiten (rot) und Empfangsstationen (grün)

Sendeeinheiten (rot) und Empfangsstationen (grün)

Kommunikation ist das A und O des Gehirns. Als Meister des Datenaustausches steht jede der rund hundert Milliarden Nervenzellen in unserem Gehirn mit tausenden Nachbarzellen in Kontakt. An diesen Kontaktstellen, den Synapsen, fließt die neuronale Information entlang einer Einbahnstraße: von der vorgeschalteten zur nachgeschalteten Zelle. Eine der herausragenden Eigenschaften des Gehirns ist seine immense Anpassungsfähigkeit. Diese basiert auf der Veränderlichkeit der Synapsen, die je nach Bedarf auf- und auch wieder abgebaut werden können. Für die meisten Neurowissenschaftler steht fest, dass Lernen und Gedächtnis erst durch diesen flexiblen Informationsaustausch möglich werden.

Die zwei Seiten der Informationsübertragung


Beim Auf- und Abbau neuer Synapsen spielen die Empfängerseiten der Kontaktstellen, die Dornen, eine aktive Rolle. Müssen mehr Informationen verarbeitet werden, so stellt eine Nervenzelle mehr Empfangsstationen auf: Neue Dornen wachsen auf Nachbarzellen zu, neue Synapsen können entstehen. Verringert sich der Informationsfluss, verschwinden die Synapsen und die Dornen können sich wieder zurückziehen. Der zweiten Seite der Synapse, der Sendeeinheit (auch Bouton genannt), haben die Wissenschaftler bislang bei der Synapsengestaltung dagegen nur eine reagierende Rolle zugewiesen.

Markierung enthüllt Aktivität des „Senders“


Diese Annahme war jedoch falsch, wie Wissenschaftler des Max-Planck- Instituts für Neurobiologie nun zeigen konnten. Erstmals gelang es ihnen, nicht nur die Empfänger-Seite sondern auch die Sendestationen über einen längeren Zeitraum zu beobachten. Hierzu markierten sie einige Nervenzellen mit einem roten Fluoreszenzfarbstoff und färbten die mit ihnen verbundenen Zellen grün. Mithilfe eines hochauflösenden Zwei-Photonen-Mikroskops konnten sie so die Veränderungen beider Synapsenseiten im Zeitraffer beobachten.


Schnell war klar, dass die Sendeeinheit einer Synapse eine deutlich aktivere Rolle bei deren Auf- und Abbau spielt, als bisher gedacht. Verringert sich der Informationsfluss, den eine Nervenzelle weitergeben muss, so werden viele der nun überflüssigen Sendestationen abgebaut. Zudem konnten die Wissenschaftler die These belegen, dass der Abbau von Dornen tatsächlich zum Verlust von Synapsen führt, da der neuartige experimentelle Ansatz ihnen erlaubte das "Auseinanderbrechen" der Kontakte zwischen Boutons und Dornen direkt am Mikroskop zu beobachten.

Gehirnumbau unerwartet komplex


„Besonders spannend ist auch, dass unterm Strich die Anzahl der Sendestationen ungefähr gleich blieb", erklärt Valentin Nägerl, der Leiter der Studie. Denn obwohl bei einer Verringerung im Informationsfluss die Anzahl der Synapsen reduziert wird, entstanden an anderer Stelle neue Sendestationen. Da nur die ursprünglich miteinander kommunizierenden Nervenzellen farblich markiert waren, konnten die Wissenschaftler nicht erkennen, ob die neuen Sender Informationen an bisher nicht an der Kommunikation beteiligte Nervenzellen weitergaben.

„Es könnte sein, dass auf diese Weise Synapsen zu hemmenden Nervenzellen entstehen, die eine Weitergabe des abgeschwächten Informationsflusses weiter reduzieren", interpretiert Nadine Becker ihre Ergebnisse. Ob das der Fall ist, wollen die Wissenschaftler nun mit weiter ausgedehnten Zellfärbungen untersuchen. Eines steht jedoch fest: Es ist nicht nur die Empfänger-Zelle, deren Strukturveränderungen die Verarbeitung von Informationen ermöglicht. Auch die Sender-Zelle reagiert aktiv auf die aktuelle Situation und spielt so eine bedeutende Rolle in unserer Fähigkeit Dinge zu lernen, oder uns an sie zu erinnern.
(Max-Planck-Institut für Neurobiologie, 27.11.2008 - NPO)