Anzeige
Physik

Alle Turbulenzen sind endlich

Beleg für Verschwinden von turbulenten Strömungen mit der Zeit

Ein turbulenter Wirbel fließt durch ein dünnes Glasrohr. Vor und hinter dem Wirbel ist die Strömung laminar. © MPI für Dynamik und Selbstorganisation

Sobald eine Strömung eine bestimmte Geschwindigkeit erreicht, wird es turbulent: Die Flüssigkeit oder das Gas fließt nicht mehr geordnet, sondern wirbelt wild durcheinander. Doch anders als bisher angenommen, ist dieser Zustand nicht von Dauer. Jetzt haben Wissenschaftler gezeigt, dass in Rohrströmungen jede Turbulenz mit der Zeit verschwindet. Die Messungen der Forscher sind deutlich genauer als alle bisherigen Experimente und Computersimulationen.

Ob in Ölpipelines oder in der städtischen Wasserversorgung – turbulente Strömungen in Rohren spielen in vielen alltäglichen Anwendungen eine Rolle. Gemeinsamen ist ihnen das äußere Erscheinungsbild: Wie ein Gebirgsbach bahnen sie sich gluckernd und sprudelnd ihren Weg. Erst bei deutlich langsameren Flussgeschwindigkeiten beruhigen sich die Strömungen. Diesen Zustand bezeichnen Wissenschaftler als laminar. Entscheidend für den Unterschied zwischen turbulent und laminar sind die inneren Kräfte, welche die Wassermoleküle aneinander binden. Erst wenn ihr Einfluss schwächer ist als der Einfluss der Kräfte, die die Strömung beschleunigen, können Turbulenzen entstehen.

Von turbulent zu laminar

Bisher nahmen Forscher an, dass eine turbulente Strömung, die mit konstant hoher Geschwindigkeit fließt, auch turbulent bleibt. Doch die Wissenschaftler aus Göttingen und Delft haben nun Hinweise gefunden, die das Gegenteil belegen. „Unsere Messungen zeigen, dass jede turbulente Strömung in einem Rohr zwangsläufig laminar wird“, erklärt Björn Hof vom Max-Planck-Institut für

Dynamik und Selbstorganisation. Je nach Geometrie des Rohres kann dieser Übergang zwar viele Jahre auf sich warten lassen. Doch wie bei einer Kugel in einer Mulde, die immer wieder in den Gleichgewichtszustand zurückrollt, ist nur die laminare Strömung stabil.

Messungen im „Superstrohhalm“

Für ihre Messungen ließen die Forscher Wasser durch bis zu 14 Meter lange und nur wenige Millimeter breite Glasrohre strömen. Durch einen kurzen Wasserstrahl von der Seite erzeugten sie einen turbulenten Wirbel in der ansonsten laminaren Strömung und beobachteten, wie sich dieser auf seinem Weg durch das Rohr weiterentwickelte. Aus der Wahrscheinlichkeit, mit der der Wirbel unversehrt das Ende des Rohres erreichte, konnten sie auf die Gesetzmäßigkeiten schließen, die der Turbulenz zugrunde liegen.

Anzeige

„Um unterscheiden zu können, ob die Turbulenzen stabil oder nur sehr, sehr langlebig sind, mussten wir genau messen“, erklärt Hof. So war es etwa entscheidend, die Temperatur des Wassers während des Experiments konstant zu halten. Die Messgenauigkeit, die die Forscher so erreichten, übertrifft alle

bisherigen Messungen zu dieser Fragestellung. Selbst Computersimulationen konnten solch präzise Werte bisher nicht liefern.

Hilfe gegen unerwünschte Turbulenzen

Noch ist unklar, ob sich die Ergebnisse der Forscher auch auf Strömungen außerhalb von Rohren übertragen lassen. Doch schon jetzt könnten die neuen Ergebnisse helfen, Turbulenzen in Rohren in Zukunft gezielt zu beenden. „Turbulente Strömungen verbrauchen mehr Energie und sind deshalb oft

unerwünscht, etwa in Ölpipelines“, so Hof. Da diese Strömungen von selbst dem laminaren Zustand zustreben, könnte es möglich sein, ihre normalerweise sehr lange Lebensdauer durch eine gezielte Störung zu verkürzen und so Energie zu sparen.

(Max-Planck-Institut für Dynamik und Selbstorganisation, 25.11.2008 – NPO)

Teilen:
Anzeige

In den Schlagzeilen

Diaschauen zum Thema

keine Diaschauen verknüpft

Dossiers zum Thema

News des Tages

Feldhase

Genom des "Osterhasen" entschlüsselt

Erstes Bild der Magnetfelder ums Schwarze Loch

Ägypten: Wandbilder aus der Totenstadt

Wie das Klima den antarktischen Zirkumpolarstrom beeinflusst

Bücher zum Thema

Die Geschwindigkeit des Honigs - Ungewöhnliche Erkenntnisse aus der Physik des Alltags von Jay Ingram

Donnerwetter - Physik - von Peter Häußler

Top-Clicks der Woche