• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Mittwoch, 20.09.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Gehirn-OPs per Laserstrahl

Forscher entwickeln routinetauglichen Laser für mini­malinvasive Eingriffe

Operationen am Gehirn könnten in Zukunft auch mit einem Laser durchgeführt werden. Forscher entwickeln in einem EU-Projekt ein neues Gerät, das solche Eingriffe möglich macht. Der Laser soll eine sehr hohe Pulsenergie und hohe mittlere Leistung aufweisen und eine Wellenlänge von 6,45 Mikro­metern haben.
Laser

Laser

Experimente haben gezeigt, dass Laserlicht bei dieser Wellenlänge vor allem durch nichtwässrige Komponenten des Gehirngewebes absorbiert wird, wodurch besonders präzise Schnitte möglich werden. Dies ist besonders bei Tumoroperationen wichtig. Herkömmliche Laser zum Abtragen von Gewebe arbeiten mit 2, 3 oder 10,6 Mikrometern Wellenlänge. Hier wird das Gewebe abgetragen, weil das darin enthaltene Wasser das Licht absorbiert und verdampft.

Alte Idee, neue Technik


Die Idee, neurochirurgische Operationen mit Lasern mittlerer infraroter Wellenlänge durchzuführen, gibt es schon seit mehr als 15 Jahren. Bisher konnte sie jedoch nicht umgesetzt werden, weil handhabbare Laser in diesem Wellenlängenbereich nicht existierten.

Dass Gehirn-OPs mit einer Wellenlänge von 6,45 Mikrometern zu guten Ergebnissen führen, zeigten frühere Tests in den USA mit Freie-Elektronen-Lasern (FELs). Solche Laser sind Synchrotronstrahlungsquellen, die kohärente Strahlung mit sehr hoher Brillanz erzeugen. Sie lassen sich auf beliebige Wellenlängen einstellen. Die Operationen erfolgten an extra zu diesem Zweck eingerichteten Messplätzen des FELs.


Für den Routineeinsatz sind die FELs jedoch ungeeignet, weil sie an die großen und immens teueren Teilchenbeschleuniger gekoppelt sind. Diese liefern auch durch Ausfälle und Reparaturzeiten nicht immer zuverlässig Strahlung, außerdem fehlen die Voraussetzungen für die Intensivmedizin.

Ziel: Table-Top-Laser


Im Rahmen eines Konsortiums aus fünf europäischen Forschungseinrichtungen und vier Unternehmen wollen Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) um Dr. Valentin Petrov nun sogenannte Table-Top-Laser - also Geräte, die auf einen Tisch passen - entwickeln, die sich für den routinemäßigen Einsatz in der Neurochirurgie eignen. Dabei handelt es sich um Festkörper-Laser, die Licht der Wellenlänge von ein oder zwei Mikrometern ausstrahlen. Durch so genannte optisch-parametrische Oszillatoren, die auf Kristallen basieren, in denen sich nichtlinear-optische Prozesse abspielen, wird die Wellenlänge dann ins mittlere IR umgewandelt.

Besondere Herausforderung für die Forscher im Projekt MIRSURG (Mid-Infrared Solid-State Laser Systems for Minimally Invasive Surgery) ist es, die spezifische zeitliche Struktur, die zu dem erwünschten Effekt führt, mit robuster und zuverlässiger „all-solid-state“-Lasertechnologie zu realisieren.

Viele Anwendungsmöglichkeiten


Das dreijährige Projekt wird durch das 7. Rahmenprogramm (Information and Commu­nication Technologies) in einer Höhe von 2,8 Millionen Euro gefördert, das Gesamtbud­get des Projektes beträgt 3,9 Millionen Euro. „In dieser Zeit wollen wir die technologische Machbarkeit zeigen. Für die Geräteentwicklung und Klinikstudien müsste es dann ein Folgeprojekt im Programm ,Gesundheit' geben", sagt Petrov.

Gelingt es den Forschern, die Technologie zu etablieren, sieht Petrov noch weitere Anwendungsmöglichkeiten für solche Laser im mittleren IR in der Medizin aber auch in den Bereichen Sicherheit, Umwelt und Nanotechnologie.
(idw - Forschungsverbund Berlin, 18.09.2008 - DLO)
 
Printer IconShare Icon