• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 26.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Mit Mathe gegen Lachgas

Neue Formel hilft bei der Bekämpfung des Treibhausgases im Rahmen der Abwasserreinigung

Die Kosten für die Reinigung von stickstoffbelasteten Abwässern könnten in Zukunft erheblich gesenkt werden. Bodenforscher haben ein neues mathematisches Modell entwickelt, das entscheidend daran beteiligt ist, die optimalen Bedingungen für eine mikrobiologische Säuberung zu finden.
Stickstoffhaltiger Dünger

Stickstoffhaltiger Dünger

Mit Hilfe des stabilen natürlichen Stickstoff-Isotops 15N ist dieses bisher genaueste mathematische Modell erstmals in der Lage, die Mengen an Distickstoff (N2) aus den komplexen biochemischen Reinigungsprozessen Anammox und Denitrifikation sowie des atmosphärischen Hintergrundes exakt zuzuordnen, schreiben die Forscher in der Fachzeitschrift Rapid Communications in Mass Spectrometry. Dadurch kann der Wirkungsgrad solcher Abwasserreinigungsanlagen zukünftig deutlich verbessert und die Freisetzung des Treibhausgases N2O – ein Nebenprodukt der Denitrifikation - vermieden werden.

Klimaschädliches Lachgas


Neben dem öffentlich viel diskutierten Treibhausgas Kohlendioxid (CO2) spielt auch das weniger bekannte Lachgas (N2O) eine zentrale Rolle beim Klimawandel. Ähnlich wie beim CO2 ist auch für Lachgas seit Beginn der Industrialisierung ein starker Anstieg der atmosphärischen Konzentration zu beobachten. Die Konzentration von Kohlendioxid innerhalb der Atmosphäre liegt zwar etwa um den Faktor 1.000 höher als die Lachgaskonzentration, jedoch ist Lachgas 300fach stärker in seiner Treibhauswirkung als Kohlendioxid.

Die Zunahme der N2O-Konzentration in der Atmosphäre beruht im Gegensatz zu CO2 nur in einem geringeren Umfang auf der Verbrennung fossiler Brennstoffe. Der weitaus größte Teil der vom Menschen verursachten N2O-Freisetzung lässt sich auf die im Übermaß in die Umwelt eingetragenen stickstoffhaltigen Nährstoffe wie zum Beispiel Nitrat (NO3-) zurückführen, die durch natürliche mikrobielle Prozesse (Nitrifikation und Denitrifikation) zum Treibhausgas N2O umgesetzt werden.


Eines der zentralen Anliegen der Europäischen Wasserrahmenrichtlinie (WRRL) aus dem Jahre 2000 ist die Reduktion stickstoffhaltiger Nährstoffe in Gewässern. Ein Weg ist es, den Einsatz stickstoffhaltiger Dünger in der Landwirtschaft zu vermeiden oder zu optimieren. Ein anderer ist die Verbesserung von Technologien zur Abwasserreinigung.

Wasserschutz versus Klimaschutz


Aktuelle biologische Reinigungsverfahren setzen dabei auf die mikrobiellen Prozesse der Nitrifikation und der Denitrifikation. Diese ermöglichen zwar eine biologisch unbedenkliche Reinigung von Abwässern mit hohen Stickstoffbelastungen, sie haben aber auch einen entscheidenden Nachteil: Der zu entfernende Stickstoff wird vor allem in Form des Treibhausgases N2O in die Atmosphäre freigesetzt. Ein Dilemma, denn Wasserschutz und Klimaschutz schlossen sich so bisher gegenseitig aus.

Im Rahmen von experimentellen Versuchen zur Abwasserreinigung stickstoffbelasteter Abwässer wurde Anfang der 90er Jahre ein bisher unbekannter mikrobieller Prozess entdeckt, der in der Lage ist, die Hauptkomponenten der Stickstoffbelastung (Ammonium und Nitrat) unter Abwesenheit von Luftsauerstoff (anaerob) im Abwasser abzubauen, wobei als Endprodukt ausschließlich umweltneutraler molekularer Stickstoff (N2) entsteht. Die Ausnutzung dieses so genannten Anammox-Prozesses zur Reinigung von stickstoffbelasteten Abwässern könnte zukünftig eine vollständig klimaneutrale Reinigung von kommunalen Abwässern ermöglichen.

Hinzu kommt, dass der Anammox-Prozess im Gegensatz zu den bisherig eingesetzten mikrobiellen Prozessen nicht auf organische Nährstoffe angewiesen ist, so dass zukünftig auf die bisher erforderliche Zugabe von Nährstoffen während des Reinigungsprozesses verzichtet werden kann. Das verringert die Kosten der Abwasserreinigung zusätzlich.

N2 „unsichtbar“


Gerade im Hinblick auf die Entwicklung effizienter Abwasserreinigungssysteme bereitet die Erforschung des Anammox-Prozesses jedoch auch mehr als 15 Jahre nach seiner Entdeckung immer noch große Schwierigkeiten. Die Hauptursache hierfür liegt darin, dass das zu untersuchende Endprodukt des Anammox-Prozesses (N2) gleichzeitig auch im Zuge der bereits genannten Denitrifikation entstehen kann, so dass eine eindeutige Quantifizierung der Umsatzleistung nahezu unmöglich war.

Darüber hinaus ist der mikrobiologisch produzierte molekulare Stickstoff (N2) aufgrund der hohen Hintergrundkonzentration von N2 in der Erdatmosphäre (circa 79 Vol. Prozent) im Prinzip „unsichtbar“, da die freigesetzten Mengen von N2 im Vergleich zum vorhanden Luftstickstoff extrem gering sind.

N2-Mengen werden zugeordnet


Mengenbestimmung an N2

Mengenbestimmung an N2

Den beiden Bodenforscher Oliver Spott und Florian Stange vom Helmholtz-Zentrum für Umweltforschung (UFZ) ist es nun erstmals gelungen, ein neues mathematisches Modell zu entwickeln, das die Mengen an N2 aus einem Mix aus Anammox, Denitrifikation und Atmosphäre exakt zuordnen und quantifizieren kann. Es basiert auf Untersuchungen mit stabilen Isotopen. Somit können zukünftig die Optimalbedingungen für eine mikrobiologische Reinigung stickstoffbelasteter Abwässer mittels des Anammox-Prozesses besser untersucht werden, wodurch die Kosten der Abwasserreinigung langfristig gesenkt, der Wirkungsgrad erhöht und die Freisetzung von N2O vermieden werden kann.

Die Idee zur Entwicklung des neuen mathematischen Ansatzes mit dem stabilen Stickstoff-Isotops 15N ergab sich aus der Kooperation mit den UFZ-Kollegen Peter Kuschk und Diego Paredes, die sich seit längerer Zeit mit den Möglichkeiten einer mikrobiellen Reinigung stickstoffbelasteter Abwässer mittels Anammox beschäftigen. Aber nicht zuletzt auch für ihre eigene Arbeit haben die neu entwickelten Gleichungen eine große Bedeutung.

Codenitrifikation mit großer Bedeutung?


1992 wurde erstmals von japanischen Wissenschaftlern ein Stoffwechselprozess von Bodenpilzen (Fusarium Oxysporum) beschrieben, der dem Prozess der anaeroben Oxidation von Ammonium sehr ähnlich ist und der in Anlehnung an den bereits bekannten Prozess der Denitrifikation als Codenitrifikation bezeichnet wurde. Ungeachtet dessen geht man jedoch auch 15 Jahre nach der Entdeckung der Codenitrifikation immer noch davon aus, dass beim Abbau von Stickstoff aus dem Boden nur die Denitrifikation für die Freisetzung von molekularem Stickstoff (N2) verantwortlich ist.

Mittels des Einsatzes der 15N-Isotopen-Technik und des neu entwickelten mathematischen Ansatzes kann nun die N2-Freisetzung des Erdbodens im Zuge der beiden Prozesse Denitrifikation und Codenitrifikation präzise bestimmt werden. Eine erste noch junge Studie zweier britischer Wissenschaftler kam bereits zu dem überraschenden Ergebnis, dass bis zu 92 Prozent des mikrobiell freigesetzten N2 auf den Prozess der Codenitrifikation zurückzuführen sind.

Wenn sich diese ersten Erkenntnisse bestätigen und darüber hinaus auch auf andere Böden weltweit übertragen lassen, würde dies das derzeitige Verständnis über die N2-Freisetzung aus dem Erdboden komplett verändern. Mit Hilfe der neu entwickelten Gleichungen werden sich die Spott und Stange in Kooperation mit internationalen Wissenschaftlern dieser Frage widmen.
(idw - Helmholtz-Zentrum für Umweltforschung - UFZ, 03.04.2008 - DLO)
 
Printer IconShare Icon