• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 24.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Protein-TÜV gibt Startschuss für Blutgerinnung

Neuer Mechanismus zur Aktivierung der Blutgerinnung identifiziert

Ohne Blutgerinnung könnten wir keine Verletzung überstehen. Ein internationales Forscherteam hat jetzt ein Protein identifiziert, das für den Start dieses Vorgangs entscheidend sein könnte, das Enzym „Protein Disulfide Isomerase (PDI)“. PDI stellt eigentlich eine Art TÜV dar, der den korrekten Aufbau von Proteinen innerhalb von Zellen prüft und sicherstellt. Entsprechend unerwartet ist, dass PDI auch die Blutgerinnung initiiert.
Blutzellen

Blutzellen

Wie die Wissenschaftler um Professor Bernd Engelmann von der Universität München in der aktuellen Ausgabe der Fachzeitschrift „The Journal of Clinical Investigation (JCI)“ berichten, führte eine Blockade des Enzyms PDI zu einer Verringerung der Bildung von Fibrin, einem Molekül, das Netze zum Verschluss von Wunden in Blutgefäßen bildet.

Hämostase heißt der Prozess, bei dem Blutungen gestillt werden, um einen potentiell lebensgefährlichen Blutverlust zu vermeiden. Die Blutgerinnung stellt jedoch einen janusköpfigen Prozess dar - sie verhindert nicht nur bedrohliche Blutungen, sondern löst auch lebensgefährliche Thrombosen aus, also Blutgerinnsel, die zu Schlaganfällen und Herzinfarkten führen können. Möglicherweise spielen PDI und verwandte Proteine daher auch bei der Entstehung von häufigen Herz-Kreislauferkrankungen eine wichtige Rolle - und sind damit potentielle Zielmoleküle für entsprechende Therapien.

Kettenreaktion im Körper


Rund 30 Faktoren sind an der Blutgerinnung beteiligt, die letztlich in einer Art Kettenreaktion abläuft. In einem letzten Schritt dieser Gerinnungskaskade bilden die Fibrinmoleküle ein Netz, das wie ein Pfropf die Wunde verschließt. Weil in das Geflecht auch rote Blutkörperchen eingelagert werden, spricht man von einem „roten Thrombus“. Er dichtet die Wunde nach innen und außen ab, so dass der Bildung des Pfropfs eine entscheidende Abwehr- und Reparaturfunktion zukommt - die letztlich die Unversehrtheit der Gefäße garantiert.


Eine ähnliche Rolle spielen die Blutplättchen, weil sie an den Stellen einer Aderverletzung aggregieren. Es ist aber der Fibrinpfropf, der für eine stabile Versiegelung von Wunden an Gefäßwänden sorgt und damit einen lebensbedrohlichen Blutverlust verhindert.

Tissue Factor ermöglicht wichtigsten Schritte der Blutgerinnung


Es ist schon seit längerem bekannt, dass der Start der Fibrinbildung ganz entscheidend von vom so genannten „Tissue Factor (TF)“ abhängt, der auch als Thromboplastin bekannt ist. Dieses Protein wird von den Zellen der Gefäßwände sowie von Blutkörperchen produziert, aber erst bei Bedarf aktiviert. Dann ermöglicht TF einen der wichtigsten Schritte der Blutgerinnung: Die Aktivierung des Enzyms Thrombin aus der inaktiven Vorstufe Prothrombin. Das Thrombin wiederum sorgt für die Bildung des Fibrinnetzes.

„Man weiß, dass mehrere Faktoren Einfluss haben auf die Aktivierung von TF“, berichtet Engelmann. „Bisher aber war unklar, wie das Protein in einen aktiven Zustand überführt wird. Unsere Ergebnisse zeigen jetzt aber, dass PDI den TF aktivieren kann, so dass PDI selbst und wohl auch funktional verwandte Enzyme zu den wichtigsten Initiatoren der Fibrinbildung gehören.“

Partnerschaft auf Zeit


Die Versuche zeigten auch, dass PDI und TF für den Vorgang der Aktivierung eine sehr kurzfristige chemische Verbindung eingehen. Außerdem können wohl relativ wenige PDI-Moleküle eine ganze Reihe von TF-Molekülen aktivieren - und so für eine Verstärkung des Signals sorgen, das von einem verletzten Gefäß ausgeht. Das wiederum ist nötig für eine schnelle und optimale Versiegelung der Wunde.

„Bei Bedarf wird PDI von verschiedenen Quellen freigesetzt“, so Engelmann, „insbesondere aber von verletzten Zellen. Man muss sich vor Augen halten, dass bei jeder kleinen Schnittwunde Tausende von Zellen geschädigt werden. Dadurch wird unter anderem PDI freigesetzt und kann die Blutgerinnung starten. Weitere Untersuchungen sollen nun klären, ob PDI auch eine krankmachende Rolle spielen kann.“

Blutgerinnung ist nämlich ein vom Körper streng regulierter, hierarchisch aufgebauter und äußerst komplexer Prozess, der nur bei Verletzungen stattfinden darf. Ansonsten droht ein lebensgefährlicher Aderverschluss durch ein Blutgerinnsel, was eben zu Herzinfarkten und Schlaganfällen führen kann.

Bald neue Therapien gegen Herz-Kreislauferkrankungen?


„Normale Blutgerinnung und die Entstehung einer Thrombose sind mechanistisch unterschiedliche Prozesse“, so Engelmann. „Trotzdem spielt TF wohl in beiden Fällen eine gewichtige Rolle. Dann aber könnten PDI und ähnlich wirkende Enzyme bei der Entstehung gefährlicher Blutgerinnsel ebenfalls von Bedeutung sein. Sollte sich dies in weiteren Versuchen bestätigen, könnten diese Proteine als sehr wirksame Zielmoleküle für eine Therapie einer ganzen Reihe von Herz-Kreislauferkrankungen in Frage kommen, die durch Thrombosen ausgelöst werden.“
(idw - Universität München, 13.03.2008 - DLO)
 
Printer IconShare Icon