• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Dienstag, 17.01.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Wie Gedanken entstehen

Wissenschaftler ergründen „Baustoff“ von Erinnerung und Denken

Was ist ein Gedanke? Zunächst ein Feuerwerk neuronaler Aktivität, gemacht von Neuronen, den Bausteinen des Gehirns, die Information in Form von elektrischen Impulsen darstellen und weiterleiten. Nicht immer, wenn wir denken oder uns erinnern, gibt es aber einen direkten Anstoß von außen. Ein Freiburger Wissenschaftlerteam hat jetzt mithilfe aufwändiger Computersimulationen herausgefunden, dass ein sehr großes neuronales Netzwerk unter bestimmten Voraussetzungen auch ohne Anregung von außen anhaltende Aktivität zeigen kann.
Nervenzelle

Nervenzelle

Diese Aktivität stellt dann, so die Theorie der Forscher am Bernstein Center for Computational Neuroscience der Universität Freiburg den „Baustoff“ für Erinnerungen und Denkprozesse zur Verfügung. Die Arbeit wird in der Januar-Ausgabe der Zeitschrift „Neural Computation“ veröffentlicht.

Neurone erhalten Signale von vorgeschalteten Zellen, die entweder erregend oder hemmend sein können. Mathematische Modelle neuronaler Netzwerke gehen in der Regel davon aus, dass Nervenzellen diese Eingangssignale miteinander verrechnen und, sobald ein bestimmter Schwellwert erreicht ist, selbst ein Signal aussenden. Aus verschiedenen experimentellen Analysen weiß man aber, dass Neurone sich komplexer verhalten, wenn viele Signale innerhalb kurzer Zeit eintreffen. Das liegt daran, dass sich unter diesen Umständen die physikalischen Eigenschaften der Zellen vorübergehend dramatisch verändern.

Neuronale Netzwerke am Computer simuliert


Im Rahmen ihrer Studie haben nun die Forscher um Stefan Rotter vom Freiburger Institut für Grenzgebiete der Psychologie große neuronale Netzwerke am Computer simuliert, die diese Eigenschaft der Neurone erstmals im Detail berücksichtigen. Vor allem in der Großhirnrinde sind Neurone sehr stark miteinander vernetzt, das heißt, sie erhalten viele Eingangssignale, die dann die Verrechnung darauf folgender Signale modifizieren.


Die Berücksichtigung der besonderen Eigenschaften von Neuronen in derartigen Netzwerken führt zu einer hervorragenden Übereinstimmung mit Messungen an biologischen Nervenzellen im intakten Gehirn. Das neue virtuelle Netzwerk spiegelt die Realität besser wider als bisherige Modelle.

Einmal aktiv, immer aktiv


Ein besonderes Merkmal, in dem sich das Netzwerk von Rotter und seinen Kollegen von anderen Modellen unterscheidet, ist seine sich selbst aufrechterhaltende Aktivität. Wenn das Netzwerk groß genug ist, reicht es aus, es einmal anzuregen - danach bleibt es auch ohne weitere Reizung von außen aktiv. „Netzwerke aus etwas einfacher gestrickten Modellneuronen hingegen würden nach kurzer Zeit sozusagen einschlafen“, sagt Rotter. Diese Beobachtung an künstlichen Systemen lässt Rückschlüsse auf die Funktionsweise unseres Gehirns zu - denn wenn das Gehirn denkt oder sich erinnert, braucht es dazu normalerweise keinen unmittelbaren Anstoß von außen.

„Es genügt aber nicht, dass das Gehirn einfach nur aktiv ist“, sagt Rotter, „mit dem Aktivitätsmuster muss auch Bedeutung verbunden sein“. Wenn wir uns erinnern, muss das Gehirn Zusammenhänge herstellen können und sinnvolles Verhalten produzieren. Wie aber im Ozean neuronaler Aktivität des Netzwerks sinnvolle Muster entstehen, ist Gegenstand weiterer Untersuchungen von Rotter und seinen Kollegen am Bernstein Zentrum. Ihr neues Netzwerkmodell bietet ihnen hierzu vielversprechende Voraussetzungen.
(idw - Bernstein Centers for Computational Neuroscience, 08.01.2008 - DLO)
 
Printer IconShare Icon