• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Freitag, 20.01.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Molekulare Maschinen bei der Arbeit beobachtet

Form und Arbeitsweise der RNA-Helikase enthüllt

Molekulare Maschinen sind die Hauptakteure bei der Umsetzung lebenswichtiger Prozesse in unserem Körper. Durch die Spaltung des Moleküls ATP gewinnen die Proteine Energie und setzen diese gezielt für komplexe Prozesse ein. Schweizer Forschern ist es nun gelungen, eine solche molekulare Maschine - eine RNA-Helikase - bei der Arbeit zu beobachten.
Modell eines gefalteten Proteins

Modell eines gefalteten Proteins

In unserem Körper laufen ununterbrochen zahllose Prozesse ab, die für das Leben unabdingbar sind, etwa das Ablesen der genetischen Information, kodiert in der Basensequenz der Desoxyribonukleinsäure (DNA). Diese Prozesse benötigen Energie und werden durch Proteine ausgeführt - so genannte molekulare Maschinen. Diese spalten den universellen Energieträger der Zelle, das Adenosintriphosphat (ATP).

Die daraus gewonnene Energie können sie einsetzen, um die Struktur anderer Moleküle zu ändern. So verwenden beispielsweise Helikasen die Energie der ATP-Hydrolyse, um die Doppelhelix-Struktur der DNA und der RNA zu entwinden. Helikasen sind essenziell für das Kopieren und Ablesen der Erbinformation, für deren Umsetzung sowie für die Ausbildung der funktionalen Struktur von RNA-Molekülen. Helikase-Defekte führen im Allgemeinen zu komplexen Krankheitsbildern.

Welche Form haben Helikasen?


Die Bestimmung der dreidimensionalen Struktur unterschiedlicher Helikasen hat gezeigt, dass diese aus zwei globulären (kugelförmigen) Einheiten bestehen, die durch einen Spalt getrennt sind. Es ist aber bisher unklar, wie die Helikasen die Energie der ATP-Hydrolyse in Strukturänderungen der Nukleinsäuren umsetzen können. Mit der Methode des so genannten Fluoreszenz-Resonanz-Energie-Transfers ist es möglich, Abstände zwischen zwei Markern auf der Nanometerskala, also innerhalb einzelner Helikase-Moleküle, zu bestimmen. Werden Abstände zwischen mehreren Punkten bestimmt, können Rückschlüsse auf die Form der Helikase gezogen werden.


Das Forscherteam am Biozentrum der Universität Basel um Professorin Dagmar Klostermeier konnte so zeigen, dass eine bakterielle RNA-Helikase normalerweise eine offene Form einnimmt, in der der Spalt zwischen den globulären Einheiten geöffnet ist. Erst wenn die Helikase gleichzeitig mit ihrem Zielmolekül, der RNA, und der Energiequelle, dem ATP, in Wechselwirkung steht, schließt sich dieser Spalt, und die Helikase nimmt eine kompakte, geschlossene Konformation ein.

Entwindung der RNA


Als Folge dieser ATP-induzierten Konformationsänderung der Helikase wird die Doppelhelix-Struktur der RNA verzerrt und ihre Entwindung eingeleitet. Die Spaltung des ATP durch die Helikase überführt diese wiederum in die offene Form. Mehrere Zyklen von ATP-induziertem Öffnen und Schließen der Helikase führen schließlich zur Entwindung der RNA, so die Studie.

Durch zeitabhängiges Verfolgen des Abstands zwischen zwei Referenzpunkten auf beiden Seiten des Spalts ist es den Forschern gelungen, das Öffnen und Schließen der Helikase während der RNA-Entwindung in Echtzeit zu verfolgen. Damit ist es nun möglich, diesen molekularen Maschinen bei der Arbeit zuzusehen und so die Rolle ihrer Bewegungen für die Funktion zu entschlüsseln.
(idw - Universität Basel, 08.01.2008 - DLO)
 
Printer IconShare Icon