• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Sonntag, 26.03.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Van der Waals-Kraft gibt Molekülen Halt

Neue Erkenntnisse über Wechselwirkungen an Grenzfläche

Für die Bindung bestimmter organischer Moleküle auf metallischen Oberflächen ist ausschließlich die Van der Waals-Kraft, eine schwache Anziehungskraft, verantwortlich. In einem Modell für organische Bauelemente sorgt allein diese Kraft für die Bindung eines organischen Films auf eine metallene Unterlage. Diese jetzt in der Fachzeitschrift Physical Review Letters veröffentlichten neuen Ergebnisse machen die Überarbeitung zahlreicher Berechnungsmodelle für die physikalischen Interaktionen dünner Filme mit ihrem Trägermaterial erforderlich.
Nanotechnologie

Nanotechnologie

Trotz der Erfüllung komplexer Funktionen zum Beispiel als Computerchips sind anorganische Halbleiter einfach aufgebaut, was ihren Anwendungsmöglichkeiten enge Grenzen setzt. Anderes gilt für Halbleiter, die organische Materialien nutzen. Die hohe Flexibilität der organischen Moleküle erlaubt für sie völlig neue Einsatzmöglichkeiten. Doch dieser Vorteil kann nur dann genutzt werden, wenn ihre im Vergleich zu anorganischen Materialien bedeutend höhere Komplexität besser verstanden wird.

Drunter & drüber


Für die Herstellung organischer Halbleiter werden dünne Filme eines elektrisch leitenden organischen Materials auf eine Trägerfläche aufgebracht. Dabei ist es wichtig, die Wechselwirkungen an den Grenzflächen zwischen Trägermaterial und organischem Material zu verstehen. Genau dazu gelang einem österreichischen Team des Nationalen Forschungsnetzwerks (NFN) „Interface controlled and functionalised organic thin films" an der Montanuniversität Leoben ein wichtiger Beitrag. Durch aufwändige Berechnungen konnte gezeigt werden, dass ein dünner Film aus organischem Thiophen allein durch Van der Waals-Kräfte auf einer Kupferoberfläche gehalten wird. Dabei konnte die Adsorptionsenergie von dem Team mit -0.50 eV berechnet werden.

Schwache Anziehungskräfte

Schwache Anziehungskräfte

Der Sprecher des NFN, Professor Helmut Sitter vom Institut für Halbleiter- und Festkörperphysik der Johannes Kepler Universität (JKU) Linz, erläutert: „Die Van der Waals-Kraft ist eine zwischen Atomen schwach wechselwirkende Kraft, die durch unsymmetrische Ladungsverteilung in den Atomen entsteht. Wie wir jetzt wissen, wird ihr Einfluss bei extrem dünnen Materialfilmen, wie sie zur Herstellung organischer Halbleiter verwendet werden, sehr bedeutend und kann allein zur Bindung zwischen den Materialien ausreichen. Aufgrund ihrer Schwäche wurde sie aber in zahlreichen Methoden, die zur Berechnung der Wechselwirkung verschiedener Materialien verwendet werden, bisher nicht oder nur untergeordnet berücksichtigt."

Bindungsverhalten in dünnen Schichten erklärt


Damit scheint auch eine Erklärung gefunden, warum die häufig für diese Zwecke verwendete „generalized gradient approximation" (GGA) das Bindungsverhalten in dünnen Schichten bisher nicht befriedigend erklären konnte. Tatsächlich könnten diese jetzt veröffentlichten Ergebnisse lang bekannte Diskrepanzen zwischen verschiedenen experimentellen Daten und Berechnungsmodellen für die Wechselwirkung von dünnen Schichten erklären.

Die neuen Daten erweitern das grundlegende Verständnis für die Wechselwirkungen an Grenzflächen. Gleichzeitig zeigt der Einfluss der Van der Waals-Kraft, dass in dem berechneten System keine Ladungen zwischen den Atomen des organischen und des Trägermaterials transferiert werden. Für die Herstellung und Funktion organischer Halbleiter ist das von entscheidender Bedeutung.
(Wissenschaftsfonds FWF/Universität Linz, 21.11.2007 - DLO)
 
Printer IconShare Icon