• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Montag, 24.07.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Europium gibt Silizium den richtigen Dreh

Physiker mit Durchbruch bei der Integration von Halbleiter- und Spintechnologie

Physiker sind bei der Integration von Halbleiter- und Spintechnologie einen entscheidenden Schritt weiter gekommen. Ihnen ist es gelungen, eine Verbindung aus dem Metall Europium und Sauerstoff direkt auf Silizium, dem „Arbeitspferd“ der Halbleiterindustrie herzustellen. Nun besteht die Möglichkeit, Silizium-basierte Bauelemente zu realisieren, die über ihre elektrische Ladung hinaus auch den elektronischen Spin zur Informationsspeicherung und -verarbeitung nutzen.
Kristallgitter von Eropiumoxid

Kristallgitter von Eropiumoxid

„Es ist uns gelungen, den ferromagnetischen Halbleiter Europiumoxid im direkten Kontakt mit Silizium herzustellen und nachzuweisen, dass dieses neue Material mit einer parallelen Ausrichtung von über 90 Prozent der Elektronen hochgradig spinpolarisiert ist.“, so Andreas Schmehl von der Universität Augsburg, der zusammen mit Kollegen der Pennsylvania State University, der Forschungsneutronenquelle Heinz Maier-Leibnitz und der Cornell University in der aktuellen Online-Ausgabe der Fachzeitschrift „Nature Materials“ über die neuen Ergebnisse berichtet.

Elektronen sind kleine, geladene Magnete, die sich in einem Magnetfeld ausrichten lassen. Die Spinelektronik nutzt diese Eigenschaft der Elektronen aus. Wenngleich diese Technologie schon Einzug in unseren Alltag gehalten hat - die Funktion der Festplatten-Leseköpfe basiert auf dem Elektronenspin -, steht ihr großer Durchbruch noch aus. Voraussetzung für diesen Durchbruch ist die Integration der Spinelektronik mit der gewöhnlichen, auf Halbleitern basierenden Mikroelektronik.

Die heutige, auf Halbleitern basierte Mikroelektronik zieht ihre Funktionalität ausschließlich aus der elektrischen Ladung der Elektronen. Elektronen besitzen neben ihrer Ladung aber auch noch eine weitere, für die Informationsverarbeitung hochinteressante Eigenschaft, ihren Spin nämlich. Der Spin eines Elektrons gleicht der Magnetisierung einer Kompassnadel, die sich bezüglich eines Magnetfelds nur parallel (up) oder antiparallel (down) ausrichten kann.


Bislang ungenutzte Elektroneneigenschaft


Die alltägliche Halbleiterelektronik ignoriert den Spin bislang. So sind in einem iPod 50 Prozent der Spins „up“ und 50 Prozent „down“ ausgerichtet, aber weder der iPod noch seine Benutzer ziehen daraus irgendeinen Nutzen. Hier setzt das junge Forschungsfeld der Spinelektronik an, das diese beiden Elektronensorten unterscheidet und in Bauelementfunktionen einsetzt. Hierzu bedarf es aber Materialien, die einerseits nur eine Spinsorte – „up“ oder „down“ - zur Verfügung stellen und andererseits mit der Halbleitertechnologie vereinbar sind.

EuO-Elektronen gelangen ohne Ausrichtungsverlust ins Silizium


Die Augsburger Physiker haben es geschafft, mit Europiumoxid (EuO) - einer Verbindung aus dem Metall Europium und Sauerstoff - ein solches Material direkt auf Silizium herzustellen. Wie die Physiker zeigen konnten, weisen dabei 90 Prozent der elektronischen Spins des Europiumoxids in eine Richtung, deutlich mehr als in Konkurrenzmaterialien wie Eisen oder Kobalt. EuO ist in vielen Eigenschaften Silizium außerordentlich ähnlich, so dass die Verbindung dieser beiden Materialien erstmals die Möglichkeit eröffnet, die polarisierten Elektronen effizient und direkt in das Silizium zu leiten, ohne dass sie dabei ihre Ausrichtung zu verlieren.

Schutzschichten verhindern EuO-Zerfall


Das große Potential, das in Europiumoxid steckt, ist seit langem bekannt. Da EuO aber in Luft nicht stabil ist und zerfällt, konnte dieses Material bisher nicht in breitem Umfang genutzt werden. Durch die Entwicklung spezieller Schutzschichten und Bearbeitungsverfahren konnten die Augsburger Physikern dieses Problem lösen und damit die Tür zur Silizium-basierten Spinelektronik ein weites Stück aufzustoßen.
(idw - Universität Augsburg, 27.09.2007 - DLO)
 
Printer IconShare Icon