• Schalter wissen.de
  • Schalter wissenschaft
  • Schalter scinexx
  • Schalter scienceblogs
  • Schalter damals
  • Schalter natur
Scinexx-Logo
Logo Fachmedien und Mittelstand
Scinexx-Claim
Facebook-Claim
Google+ Logo
Twitter-Logo
YouTube-Logo
Feedburner Logo
Samstag, 27.05.2017
Hintergrund Farbverlauf Facebook-Leiste Facebook-Leiste Facebook-Leiste
Scinexx-Logo Facebook-Leiste

Wasser verändert Eiweiße

Forscher untersuchen Verhalten des "Grenzflächenwassers"

Wenn wir ein Ei kochen, spielt das Wasser nicht nur um das Ei herum, sondern auch in den winzigen Strukturen des Eiweißes eine große Rolle: Forschern der Ruhr-Universität Bochum und der Universität Dortmund ist es nun gelungen, die Veränderung der Wasserschicht in Proteinnähe zu untersuchen. Fazit: Wasser ist nicht, wie bisher üblicherweise angenommen, nur Statist, sondern tritt ins Rampenlicht der Reaktion. Sein dynamisches, temperaturabhängiges Verhalten bestimmt die Proteineigenschaften maßgeblich mit.

Wasser greift aktiv in Funktion von Biomolekülen ein


Eiweiße sind lange Kettenmoleküle, die aus Aminosäuren in wohldefinierter Abfolge aufgebaut sind. Erhitzt man sie oder kühlt sie ab, gehen die für biologische Funktionen wichtigen Eigenschaften des nativen, gefalteten Zustands verloren ("Denaturierung"). Normalerweise ist in der Umgebung von Proteinen immer auch Wasser zu finden, das aber traditionell als unbeteiligtes Lösungsmittel betrachtet wurde.

Im Laufe der Zeit haben sich jedoch die Hinweise gemehrt, dass Wasser aktiv in solche Prozesse eingreift: "Die Eigenschaften von Wasser scheinen eine bestimmende Rolle bei der Funktion von Biomolekülen zu spielen", so Prof. Dominik Marx von der RUB. "Allerdings ist es schwierig, solche Effekte anhand komplexer Biomoleküle, wie sie in der Natur vorkommen, wissenschaftlich fundiert zu untersuchen." Erfolgversprechender ist das Studium von synthetischen Biomimetika, also viel einfacherer Substanzen, die den natürlich vorkommenden Molekülen nachempfunden sind und diesen in den entscheidenden Eigenschaften gleichen.

Kleines Modellmolekül untersucht


Ein solches, nur acht Bausteine umfassendes Molekül ist das Oktapeptid GVG(VPGVG). Es ist aus nur drei verschiedenen Aminosäuren (Glycin, Valin und Prolin) aufgebaut und dient als "verkleinertes" Modell für das Bindegewebsprotein Elastin.


An diesem Modell konnten die Forscher mit molekulardynamischen Simulationen zeigen, dass sich die Dynamik der Wassermoleküle in unmittelbarer Nähe des Proteins bei Temperaturänderung charakteristisch verändert. Diese Veränderungen konnten sie wiederum mit Strukturänderungen des Modellproteins korrelieren. "Das gelang uns nur dank der engen Zusammenarbeit von Theoretikern und Experimentatoren in der DFG-Forschergruppe 'Wasser' (FOR 436)", unterstreicht Prof. Marx.

Die Rolle des Grenzflächenwassers


Das kurze Modell-Peptid liegt bei ca. 50 Grad Celsius in einem maximal kompakten Zustand vor ("gefaltete Konformation") und streckt sich ("entfaltete Konformation") bei Temperatursteigerung und -senkung. Daher konnten die Forscher beide Prozesse im Temperaturbereich des flüssigen Wassers untersuchen. Sie zeigten, dass die temperaturabhängigen Strukturänderungen des Peptids sich in den Wechselwirkungen zum Wasser widerspiegeln. Insbesondere die Wasserstoffbrückenbindungen zwischen Wassermolekülen und dem Proteinrückgrat ("backbone") lassen sich im Faltungsbereich bis zu ca. 50 Grad Celsius deutlich schwerer brechen als solche zwischen Wassermolekülen in reinem Wasser ("bulk").

Dies ändert sich jedoch abrupt bei ca. 50 Grad Celsius: Bei der Entfaltung brechen die Wasserstoffbrücken mit geringerem Energieaufwand als in reinem Wasser, sie sind also gegenüber diesen geschwächt. Damit haben die Forscher erstmals die Änderung des dynamischen Verhaltens des "Grenzflächenwassers" bei Faltung und Entfaltung eines kurzen Peptids nachgewiesen. Zur Zeit untersuchen sie, ob dies ein Spezifikum kurzer Peptide, oder auch für langkettigere Proteine charakteristisch ist.

Über ihre Ergebnisse berichten die Forscher im Fachmagazin "Physical Review Letters".
(idw - Ruhr-Universität Bochum, 21.04.2004 - DLO)
 
Printer IconShare Icon